International Journal of Wildland Fire

Scientific Journal of the International Association of Wildland Fire

Contents	Volume 14	Number 2	2005
Global fire activity from two years of MODIS data Ivan Csiszar, Lynn Denis, Louis Giglio, Christopher O. Justice and Jenny Hewson	117–130	Space-borne observations from the MODIS sensor were used to analyse spatial and temporal dynamics of fire occurrences. The yearly global total fire counts observed in 2001 and 2002 differed by less than 3%, but in several regions significant differences were found between the two years in the extent and timing o burning.	
Examining fire behavior in mesquite–acacia shrublands <i>Tamara J. Streeks, M. Keith Owens and</i> <i>Steve G. Whisenant</i>	131–140	We evaluated two current fire behavior systems (BEHAVE and the CSIRO fire spread and fire danger calculator) and three models developed for shrublands to determine how well they pre- dicted rate of spread and flame length during three summer fires within mesquite–acacia shrublands. The geospatial relationship between fuel characteristics and fire characteristics (neat heat and fire temperature) was also investigated.	
Numerical study of a crown fire spreading toward a fuel break using a multiphase physical model <i>Jean-Luc Dupuy and Dominique Morvan</i>	141–151	The propagation of a wildfire through a Mediterranean pine stand was simulated using a multiphase physical model of fire behaviour. This model was based on a detailed description of the physics of a forest fire. The numerical results showed the ability of this approach to simulate the propagation of a crown fire and to test the efficiency of a fuel break with success.	
Fuel load, humus consumption and humus moisture dynamics in Central European Scots pine stands <i>Marco Hille and Jan den Ouden</i>	153–159	fire under different mois that influence humus moves vegetation type and over	e consumption of Scots pine humus by sture and fuel load scenarios. Factors pisture in the field, such as field layer rstorey crown structure, are reviewed. numus loads in Central European pine
Calibrating the Fine Fuel Moisture Code for grass ignition potential in Sumatra, Indonesia <i>William J. de Groot, Wardati and Yonghe Wang</i>	161–168	occurrence in South-east was calibrated using gra Sumatra, Indonesia. The satellite-detected hot spo cent of historical hot spo high (13%) categories of	I was developed to predict grass fire t Asia. An existing fire danger model iss moisture and ignition studies from e calibrated model was compared to ots in South-east Asia. Eighty-six per- ots occurred in the extreme (73%) and f the fire danger model, indicating that a reliable predictor of fire starts at the
An index for tracking sheltered forest floor moisture within the Canadian Forest Fire Weather Index System B. M. Wotton, B. J. Stocks and D. L. Martell	169–182	stand (where lightning st developed through destru is similar to the Duff Moi	e in very sheltered locations of a pine trikes tend to ignite the forest floor) is active forest floor sampling. The model isture Code of the Canadian Forest Fire owever, uses a different drying rate and on.

Evaluation of log and branch barriers as post-fire rehabilitation treatments in a Mediterranean pine forest in Greece <i>Yannis Raftoyannis and Ioannis Spanos</i>	183–188	After a severe fire in a <i>Pinus brutia</i> Ten. forest near Thessaloniki, Greece, the construction of log and branch barriers, as post- fire rehabilitation treatments, was not proved to be effective in post-fire ecosystem recovery. The slope orientation affected the revegetation process and it was more successful in the north slopes.
Comparison of burn severity assessments using Differenced Normalized Burn Ratio and ground data <i>Allison E. Cocke, Peter Z. Fulé and</i> <i>Joseph E. Crouse</i>	189–198	Remote sensing is efficient for assessing burn severity but accuracy is poorly understood. We used data from pre-fire permanent plots and post-fire composite burn index plots to show that the Differenced Normalized Burn Ratio was relatively accurate for comprehensive assessment, especially for more severely burned sites.
Effects of the fire retardant Phos-Chek on vegetation in eastern Australian heathlands <i>Tina Bell, Kevin Tolhurst and Michael Wouters</i>	199–211	This study investigates the effects of a fire retardant on heathland vegetation in eastern Australia. A single application of retardant did not change species composition or projected foliage cover of the major life forms of native vegetation but it did tend to enhance weed invasion.