International Journal of Wildland Fire

Scientific Journal of the International Association of Wildland Fire

Contents Vo	olume 15	Issue 4	2006
Generalization of the fire line rotation model to curved fire l <i>Imma Oliveras, Josep Piñol and Domingos X. Viegas</i> <i>International Journal of Wildland Fire</i> 15 , 447–456.	to lir tiv cu	ry for straight fire li learly along a homo re effects. This stud	model, which was developed in the laborations, states that a fire front does not spreatogeneous fuel bed, it rotates due to convectly tests the applicability of this model the laboratory conditions and demonstrate otation movement.
Fire type mapping using object-based classification of Ikonos imagery <i>George H. Mitri and Ioannis Z. Gitas</i> <i>International Journal of Wildland Fire</i> 15 , 457–462.	in in be we	g object-based clas agery. The metho tween areas of sur-	ccurately map the type of fire by employ ssification of very high spatial resolutio od resulted in successful discriminatio face and canopy burn. The results of this applications in the study of fire behaviou fire effects.
Fuel loads, fire regimes, and post-fire fuel dynamics in Flo Keys pine forests Jay P. Sah, Michael S. Ross, James R. Snyder, Suzanne Koptur and Hillary C. Cooley International Journal of Wildland Fire 15, 463–478.	th an fu su	e contributions of c d burn season. Win es, but are less eff	forests, fire behavior varies depending o different life forms to the total fuel loads ter fires are generally milder than summe fective at inhibiting shrub encroachmen ked seasonal approach should be used for
Forest floor fuel dynamics in mixed-oak forests of south-eastern Ohio John B. Graham and Brian C. McCarthy International Journal of Wildland Fire 15, 479–488.	an le	d treatment. In east	ge over time depending on the fuel clas tern mixed-oak forests, fuel dynamics ar are fire regime than forest production an
Accurate estimation of mean fire interval for managing fire <i>Xiaojun Kou and William L. Baker</i> International Journal of Wildland Fire 15 , 489–495.	or	trees is developed	imating mean fire interval from fire scar . The method is shown to greatly improve unbiased estimates.
Response of boreal plant communities to variations in previ fire-free interval <i>Jill F. Johnstone</i> <i>International Journal of Wildland Fire</i> 15 , 497–508.	in cc fu	boreal forests when ntrasting fire-free in e occurrence were	n post-fire plant community compositio re overlapping burn scars have resulted i ntervals. The strongest effects of increase e increases in the abundance of wood d decreases in residual woody debris.
Soil heating and germination: investigations using leaf sco on graminoids and experimental seed burial <i>Mark G. Tozer and Tony D. Auld</i> <i>International Journal of Wildland Fire</i> 15 , 509–516.	ca th ge an bo	tes the degree of se e relationship betwee rmination. By foll experimental setti	on leaves of resprouting graminoids indi- oil heating during a fire. We investigate een scorch length and heat-triggered see owing the fate of seeds during a fire i ing we show that emergence depends o n and other depth-related factors such a ature stresses.
Measurements of moisture in smoldering smoke and implications for fog <i>Gary L. Achtemeier</i> <i>International Journal of Wildland Fire</i> 15 , 517–525.	ity fro tio to	of moisture. The smoldering smoons of light winds a	smoldering smokes showed large variabile oretical calculations show that moistur okes is sufficient, under nocturnal condi- and entrapment, to raise relative humidit existing fog, and to initiate fog where for have occurred.

Simulation of prescribed burning strategies in south-west Tasmania, Australia: effects on unplanned fires, fire regimes, and ecological management values <i>Karen J. King, Geoffrey J. Cary, Ross A. Bradstock, Joanne</i> <i>Chapman, Adrian Pyrke and Jonathon B. Marsden-Smedley</i> <i>International Journal of Wildland Fire</i> 15 , 527–540.	A computer simulation model, FIRESCAPE-SWTAS, was used to determine the trade-offs between the extent of prescribed burning and the long-term impacts of unplanned fires on man- agement values in the World Heritage Area of south-west Tasmania, Australia. Fire size distributions, fire incidences, mean annual areas burnt, mean inter-fire intervals, and risks to defined values in the landscape were assessed.	
Seasonality and fire severity in savanna landscapes of monsoonal northern Australia <i>Jeremy Russell-Smith and Andrew C. Edwards</i> <i>International Journal of Wildland Fire</i> 15 , 541–550.	Seasonal fire severity in two northern Australian national parks was assessed from 10 years of photo records for 178 monitoring plots. Data for 719 fires indicate that the great majority of early dry season (pre-August) fires were of very low severity, whereas fires later in the dry season were typically of substantially greater severity.	
Fire regimes and soil erosion in north Australian hilly savannas Jeremy Russell-Smith, Cameron Yates and Brian Lynch International Journal of Wildland Fire 15, 551–556.	Soil erosion is a major landscape management issue in mon- soonal northern Australia. However, the impacts of savanna burning on soil erosion are not recognised in current Australian national assessments. A simple erosion pin assessment under- taken at two hillslope sites illustrates that whereas significant erosion was observed on both unburnt and burnt treatments, overall there was roughly three times net soil loss, and two times more soil movement, on late dry season burnt plots.	
Influence of topography and forest structure on patterns of mixed severity fire in ponderosa pine forests of the South Dakota Black Hills, USA <i>Leigh B. Lentile, Frederick W. Smith and Wayne D. Shepperd</i> <i>International Journal of Wildland Fire</i> 15 , 557–566.	Patterns of burn severity (i.e. fire effects on soil and vegeta- tion) were correlated with topographical position and pre-fire vegetation structure. Managers should consider topography and stand structure together when making strategic decisions about which stands to thin or otherwise manage to reduce the severity of future wildfires.	
Investigation of the wind speed threshold above which discarded cigarettes are likely to be moved by the wind <i>Gavriil Xanthopoulos, Dany Ghosn and George Kazakis International Journal of Wildland Fire</i> 15 , 567–576.	Cigarette butts thrown from passing cars are potential igni- tion sources if they end up on dead and dry fuels. The paper presents an experimental investigation of the wind speed thresh- olds above which discarded butts are unlikely to stay on the road surface but will roll with the wind to the fuels on the roadside.	