International Journal of Wildland Fire

Scientific Journal of the International Association of Wildland Fire

Contents Volume	e 16 Issue 2 2007
	est Meteorology' Potter and MD Flannigan
This issue is dedicat	ted to Sue A Ferguson
Preface Timothy J. Brown, Brian E. Potter and Mike D. Flannigan International Journal of Wildland Fire 16 , iii	
Climatological and statistical characteristics of the Haines Index for North America Julie A. Winkler, Brian E. Potter, Dwight F. Wilhelm, Ryan P. Shadbolt, Krerk Piromsopa and Xindi Bian International Journal of Wildland Fire 16, 139–152	A 40-year climatology of a widely-used fire weather index, th Haines Index, is provided for North America to assist fire mar agers in interpreting and evaluating wildland fire forecasts for their location.
Impact of climate change on area burned in Alberta's boreal forest <i>Cordy Tymstra, Mike D. Flannigan, Owen B. Armitage</i> <i>and Kimberley Logan</i> <i>International Journal of Wildland Fire</i> 16 , 153–160	What impact will climate change have on fire activity i Alberta's boreal forest? The present paper attempts to answe this question by using a fire growth simulation model calle <i>Prometheus</i> to estimate the area burned for three climate chang scenarios. The Canadian Regional Climate Model was used t generate the model input weather streams. A trend towards a increasing area burned was estimated.
Modelling the probability of sustained flaming: predictive value of fire weather index components compared with observations of site weather and fuel moisture conditions <i>Jennifer L. Beverly and B. Mike Wotton</i> <i>International Journal of Wildland Fire</i> 16 , 161–173	Data from experimental test fires in 10 different fuel categorie were used to compare models of the likelihood of sustaine flaming based on site weather and fuel moisture measure ments with models based on fire weather index components Results indicated that fire weather index components are highl effective at predicting the probability of sustained flaming.
Fire-growth modelling using meteorological data with random and systematic perturbations <i>Kerry Anderson, Gerhard Reuter</i> <i>and Mike D. Flannigan</i> <i>International Journal of Wildland Fire</i> 16 , 174–182	Random and systematic perturbations in meteorological observations and forecasts are applied to a fire-growth model t quantify the effects of their uncertainty. The study show that random perturbations captured fire shape changes due t small-scale variations lost in the hourly data, while system atic perturbations corrected for the over-prediction of daily fingrowth based on typical weather forecasts.
Coupled influences of topography and wind on wildland fire behaviour <i>Rodman Linn, Judith Winterkamp,</i> <i>Carleton Edminster, Jonah J. Colman</i> <i>and William S. Smith</i> <i>International Journal of Wildland Fire</i> 16 , 183–195	Ten simulations were performed with the HIGRAD/FIRETER model to explore the potential extent of the coupling between the fire, atmosphere, and topography. The ten simulations includ five topographies and two ambient wind speeds. Analyses of these simulations reveal where point-functional models migh be sufficient, and where topographically modified wind field or coupled fire and transport models are necessary.
Local-scale modelling system to simulate smoke dispersion Joana Valente, Ana I. Miranda, António G. Lopes, Carlos Borrego, Domingos X. Viegas and Myriam Lopes International Journal of Wildland Fire 16, 196–203	The main purpose of this paper is to present a fire behaviou system, developed to estimate fire progression, smoke disper sion and visibility impairment, at a local scale, and to evaluat its performance comparing results with measurements from experimental field fires.
Application of the Nelson model to four timelag fuel classes using Oklahoma field observations: model evaluation and comparison with National Fire Danger Rating System algorithms J. D. Carlson, Larry S. Bradshaw, Ralph M. Nelson Jr, Randall R. Bensch and Rafal Jabrzemski International Journal of Wildland Fire 16, 204–216	This paper describes the application of a next-generation dea fuel moisture model, the 'Nelson model', to four timelag fue classes using an extensive 21-month data set of dead fuel mois ture observations. Including all observations, the Nelson mode showed improvement over National Fire Danger Rating Sys tem (NFDRS) algorithms for each fuel size class (1-h, 10-H 100-h, and 1000-h); however, NFDRS outperformed the Ne son model for 1-h fuels when observed fuel moisture value were at or below 30%.

Fire danger rating in the United States of America: an evolution since 1916 <i>Colin C. Hardy and Charles E. Hardy</i> <i>International Journal of Wildland Fire</i> 16 , 217–231	This paper traces the evolution of fire-danger rating in the United States, including discussions of significant develop- ment milestones, innovative instrumentation, and a succession of analog fire-danger meters, or calculators. Pioneering work began as early as 1916, and efforts continue today towards implementation of a 'purely analytical system'.
Relationships between seasonal patterns of live fuel moisture and meteorological drought indices for Mediterranean shrubland species <i>G. Pellizzaro, C. Cesaraccio, P. Duce,</i> <i>A. Ventura and P. Zara</i> <i>International Journal of Wildland Fire</i> 16 , 232–241	Seasonal patterns of live fuel moisture content and their rela- tionships with changes of environmental conditions (i.e. rain- fall, air temperature and soil moisture) were analyzed. Seasonal trends of moisture content were compared with five meteorolog- ical drought indices. The capability of these indices to describe moisture variations of each species was evaluated.
Precipitation associated with lightning-ignited wildfires in Arizona and New Mexico Beth L. Hall International Journal of Wildland Fire 16 , 242–254	Natural wildfire ignitions are often attributed to 'dry' lightning, or lightning with little or no precipitation. This study used grid- ded precipitation data to compare the amount of precipitation associated with natural wildfires and the amount of precipita- tion associated with lightning strikes that were not associated with natural wildfire events.