International Journal of Wildland Fire

Scientific Journal of the International Association of Wildland Fire

Contents V	olume 16	Issue 6	2007
Modelling emissions from Canadian wildfires: a case stud of the 2002 Quebec fires David Lavoué, Sunling Gong and Brian J. Stocks International Journal of Wildland Fire 16 , 649–663	th te 1	e Canadian Forest m and the Canadia month, ~150 fires c	02 Quebec wildfires were modelled with Fire Behaviour Prediction (FBP) Sys- n weather forecast model. In less than ontributed 5 and 51% of Canada's annual black carbon emissions, respectively.
Comparing landscape-based decision rules for placement fuel treatments in the boreal mixedwood of western Cana <i>Marc-André Parisien, David R. Junor and Victor G. Kay</i> <i>International Journal of Wildland Fire</i> 16 , 664–672	ida of <i>fka</i> Ca at ru be	fuel treatments in anada. Burn probab- ive effectiveness of le-set produced a red	ule-based approach to prioritise locations the boreal mixedwood forest of western ility mapping was used to assess the rel- three placement rule-sets. Although each fuction in burn probability, fuel treatment sed by using the natural fire breaks already pe.
A fuel treatment reduces fire severity and increases suppre efficiency in a mixed conifer forest Jason J. Moghaddas and Larry Craggs International Journal of Wildland Fire 16, 673–678	fi m	e severity. In this pay	used to modify fire behaviour and reduce per, we examine the effects one fuel treat- aviour and fire suppression effectiveness nifer forest.
Evaluation of a post-fire tree mortality model for western USA conifers <i>Sharon M. Hood, Charles W. McHugh, Kevin C. Ryan,</i> <i>Elizabeth Reinhardt and Sheri L. Smith</i> <i>International Journal of Wildland Fire</i> 16 , 679–689	de gu m el Tl	eveloping prescribed nidelines. We evalu odel now used in s against independe	of post-fire tree mortality is critical for d fire burn plans and salvage marking ated the performance of the mortality USA fire behaviour and effects mod- ent data for 13 western USA conifers. ns model accuracy by species and offers improvements.
Predicting sustained smouldering combustion in tremblin aspen duff in Elk Island National Park, Canada <i>S. G. Otway, E. W. Bork, K. R. Anderson and M. E. Alexa</i> <i>International Journal of Wildland Fire</i> 16 , 690–701	su ander M Fo bi th	bsurface fire may per oisture Code and Dr prest Fire Weather In lity of sustained sm rough experimental	ons are presented under which ground or ersist in trembling aspen forests. The Duff rought Code components of the Canadian ndex System were calculated and proba- ouldering combustion equations derived test fires conducted within the aspen Island National Park, Alberta, Canada.
A computational method for optimising fuel treatment loca Mark A. Finney International Journal of Wildland Fire 16, 702–711	te m tro is ra tra Tl be	rns influence the m ethod is described eatment patterns for demonstrated for b nge of fire weathe avel routes (areas n nis procedure is us	ments suggest spatial fuel treatment pat- ovement of large fires. A computational herein which identifies efficient fuel r a selected fire weather scenario. This both simple and complex landscapes, a rs, and varying treatments. Major fire heeding treatment) could be identified. eful for inclusion in fire management nce of fuel treatments at both stand- and be measured.
Simulation of long-term landscape-level fuel treatment effects on large wildfires <i>Mark A. Finney, Rob C. Seli, Charles W. McHugh,</i> <i>Alan A. Ager, Bernhard Bahro and James K. Agee</i> <i>International Journal of Wildland Fire</i> 16 , 712–727	ca be ov fo th de fu be tre	Illy random and optime thaviour of large fin yer the course of five r three study areas. e rate of fuel treatme ccade) competes aga el treatments require treated each year.	explored how fuel treatments in topologi- mal spatial patterns affect the growth and res when implemented at different rates re decades. Simulations were performed For different spatial treatment strategies, nent (percentage of land area treated per ainst the rates of fuel recovery. Optimal re at least 1 to 2% of the landscape to Randomly arranged units with the same s require about twice that rate to produce reduction.

Small mammal communities in a pyrogenic habitat mosaic <i>Karl W. Larsen, Ian T. Adams and Diane L. Haughland International Journal of Wildland Fire</i> 16 , 728–740	We examined small mammals (mice, voles, etc.) in four habitats created by a 5-year-old wildfire. The number of species present and their abundance inside the fire's perimeter were higher than that just outside the perimeter. Within the fire's perimeter, there was little variation across the different habitat types.	
Post-fire ephemerals and spinifex-fuelled fires: a decision model for bilby habitat management in the Tanami Desert, Australia Richard Southgate and Susan Carthew International Journal of Wildland Fire 16 , 741–754	Fire management could provide an opportunity to enhance habi- tat suitability for a threatened bandicoot in the Tanami Desert, central Australia. Seed from a post-fire ephemeral grass species forms a key food source of this marsupial. A decision tree is provided to allow managers to determine when there has been sufficient accumulation of vegetative fuel to carry a fire and esti- mate the expected production of the ephemeral grass in response to rainfall and time-since-fire.	
Factors in United States Forest Service district rangers' decision to manage a fire for resource benefit <i>Martha A. Williamson</i> <i>International Journal of Wildland Fire</i> 16 , 755–762	Wildland Fire Use (WFU), a tool of current US fire management policy, allows lightning ignitions to burn under certain condi- tions. The decision to use WFU rests with line officers, who ultimately accept responsibility for the fire's risks and benefits. The present study investigated the influences on the decision to use WFU by US Forest Service district rangers.	
Zigzag shape of the fire front Domingos Xavier Viegas International Journal of Wildland Fire 16 , 763–764	The shape of a fire line can be non regular, like a zigzag, due to local convective effects in flank and back spreading fires.	