International Journal of Wildland Fire

Scientific Journal of the International Association of Wildland Fire

Contents	Volume 19	Iss	ue 2	2010	
Wildland–urban interface fire behaviour and fire mode in live fuels David R. Weise and B. Mike Wotton International Journal of Wildland Fire 19 , 149–152	-	the 2nd Fire Destin, FL,	Behavior USA are research	results of two special inv ur and Fuels Conference presented. Scientists fro and wildland fire behavio esults.	in March 2007, om the fields of
Experimental measurements during combustion of moist individual foliage samples Brent M. Pickett, Carl Isackson, Rebecca Wunder, Thomas H. Fletcher, Bret W. Butler and David R. Weise International Journal of Wildland Fire 19, 153–162		southern Un Time-depend were obtaine	ited State lent mass ed and ar noisture	high moisture fuels from es were burned over a fla and temperature profiles halysed. It was observed remained in the individu	at-flame burner of these samples that significant
An examination of fire spread thresholds in discontinuous fuel beds <i>Mark A. Finney, Jack D. Cohen, Isaac C. Grenfell</i> <i>and Kara M. Yedinak</i> <i>International Journal of Wildland Fire</i> 19 , 163–170		thresholds in Flame contac voids. Fire s	terms of twas fou pread the	nts were conducted to exact fuel bed depth, horizonta nd necessary to ignite fue resholds were strongly de flame profile relative to t	I gap and slope ls across the fue ependent on the
An examination of flame shape related to convection heat transfer in deep-fuel beds <i>Kara M. Yedinak, Jack D. Cohen, Jason M. Forthofer</i> <i>and Mark A. Finney</i> <i>International Journal of Wildland Fire</i> 19 , 171–178		and laborato within vertic laterally exte	ry exper ally arrai nd across	vsis using a simple lamin iments indicates that non nged, discontinuous 'deep s fuel voids to make conta e convective heating.	n-steady flames p-fuel' beds can
A numerical study of slope and fuel structure effects on coupled wildfire behaviour Rodman R. Linn, Judith L. Winterkamp, David R. Weise and Carleton Edminster International Journal of Wildland Fire 19 , 179–201		and upslope that slope af	topograp fects fire tion, inte	tions using three different by were used to examine differently depending on tractions between physica are studied.	e the possibility the fuel bed. In
A sub-grid, mixture–fraction-based thermodynamic equilibrium model for gas phase combustion in FIRETEC: development and results <i>Michael M. Clark, Thomas H. Fletcher</i> <i>and Rodman R. Linn</i> <i>International Journal of Wildland Fire</i> 19 , 202–212		model, whic dict combust landscape-sc	h relies ion prod ale wild aparral a	ne development of a gas ph on thermodynamic equi ucts and temperatures in and fire model. Simulat nd ponderosa pine fuel be approach.	librium to pre- a physics-based ions of fires in
Testing and classification of individual plants for fire behaviour: plant selection for the wildland–urban interface Robert H. White and Wayne C. Zipperer International Journal of Wildland Fire 19 , 213–227		are problema them. Measu flame spread researchers	tic becau irements rate, flan have use	sts for the wildland–urbar use of the sources of inform of flammability include me height and thermal and d oxygen consumption ility and improve plant list	mation to derive ignition times, alysis. Recently, methodology to
Ignition and flame-growth modelling on realistic build and landscape objects in changing environments <i>Mark A. Dietenberger</i> <i>International Journal of Wildland Fire</i> 19 , 228–237	-	and ornamen was develop data to derive ing fire threa	tal plants ed. Benc e flamma its to stru	tion and fire growth mod on a parcel lot in a changi h-scale and mid-scale fi ibility properties. Researc ictures by preventing larg ne travel from firebrand s	ing environment re tests provide h is for mitigat- e-area ignitions

The wildland-urban interface fire problem – current approaches and research needs William E. Mell, Samuel L. Manzello, Alexander Maranghides, David Butry and Ronald G. Rehm International Journal of Wildland Fire **19**, 238–251 Wildfires that spread into wildland–urban interface (WUI) communities present significant challenges on several fronts. There is a need for a well-characterised, systematic testing of current and new approaches to reduce damages from WUI fires. This would result in improved fuel treatment techniques for wildland and residential fuels, risk assessment strategies, economic cost analysis models, and test methods for fire-resistant building designs and materials.

Images (clockwise from top left): burning manzanita leaf (T. H. Fletcher), deep fuel bed burning (USDA Forest Service, Fire Sciences Laboratory, Missoula, MT), cone calorimeter (USDA Forest Service, Forest Products Laboratory, Madison, WJ), chaparral prescribed burn (USDA Forest Service, Forest Fire Laboratory, Riverside, CA), WFDS simulation (NIST, Building Fire Research Laboratory, Gaithersburg, MD).