## International Journal of Wildland Fire

Scientific Journal of the International Association of Wildland Fire

| Contents                                                                                                                                                                                                                                                                                                                                       | Volume 19                  | Issue 3                                                                                                       | 2010                                                                                                               |                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Forest fire occurrence and climate change in Canada <b>B. M. Wotton, C. A. Nock and M. D. Flannigan</b><br>International Journal of Wildland Fire <b>19</b> , 253–271                                                                                                                                                                          | of<br>in<br>st             | future fire occurre<br>the future is proje<br>udied, though this                                              | ence across Canada.<br>cted to increase acr<br>increase varies regi                                                | I to develop projections<br>Annual fire occurrence<br>ross all forested regions<br>onally. Increases in fire<br>phtning-caused fires.                            |
| Spatial variation of trends in wildfire and summer<br>drought in British Columbia, Canada, 1920–2000<br>Andrea Meyn, Sebastian Schmidtlein,<br>Stephen W. Taylor, Martin P. Girardin,<br>Kirsten Thonicke and Wolfgang Cramer<br>International Journal of Wildland Fire <b>19</b> , 272–283                                                    | cc<br>m<br>Bi<br>in<br>m   | onsistent with proj<br>ate warming in Ca<br>ritish Columbia, v<br>wildfire activity t<br>ers with the streng  | ections of future<br>nada. For Canada's<br>ve observed oppos<br>hat is significantly                               | over recent decades is<br>increase driven by cli-<br>most western province,<br>ing trends: a decrease<br>related to wetter sum-<br>ip considerably varying       |
| Convective heat transfer in fire spread through<br>fine fuel beds<br><i>W. R. Anderson, E. A. Catchpole and B. W. Butler</i><br><i>International Journal of Wildland Fire</i> <b>19</b> , 284–298                                                                                                                                              | cc<br>ga<br>re             | onvective heating al<br>as temperature and<br>gimes were identi                                               | head of a fire front. I<br>horizontal gas velo                                                                     | wind tunnel to measure<br>Measurements included<br>city. Three general flow<br>sed to characterize the<br>nd fuel bed.                                           |
| Assessing the exposure of the built environment<br>to potential ignition sources generated<br>from vegetative fuel<br>J. L. Beverly, P. Bothwell, J. C. R. Conner<br>and E. P. K. Herd<br>International Journal of Wildland Fire 19, 299–313                                                                                                   | or<br>po<br>ar<br>in<br>ar | n the degree or lev-<br>potential ignition so<br>pproach can be use<br>terface as a means                     | el of exposure of the<br>urces generated fro<br>d to map the exten-<br>s of informing strat<br>ties, and to compar | rface is assessed based<br>ne built environment to<br>om vegetative fuel. The<br>t of the wildland–urban<br>egic planning exercises<br>e conditions within and   |
| Flammability descriptors of fine dead fuels resulting<br>from two mechanical treatments in shrubland:<br>a comparative laboratory study<br><i>Eva Marino, Javier Madrigal, Mercedes Guijarro,</i><br><i>Carmen Hernando, Carmen Díez</i><br><i>and Cristina Fernández</i><br><i>International Journal of Wildland Fire</i> <b>19</b> , 314–324 | ic<br>in                   | al fuel treatments of a shrubland comr                                                                        | on flammability of munity of north-we                                                                              | e effects of two mechan-<br>resulting fine dead fuels<br>stern Spain in order to<br>ildfire initiation risk.                                                     |
| A model for predicting human-caused wildfire<br>occurrence in the region of Madrid, Spain<br><i>Lara Vilar, Douglas G. Woolford, David L. Martell</i><br><i>and M. Pilar Martín</i><br><i>International Journal of Wildland Fire</i> <b>19</b> , 325–337                                                                                       | 90<br>th<br>w<br>pr<br>fo  | 0% of wildfires are<br>e development of a<br>ildfire occurrence<br>resence of railway<br>rrest areas were hig | e caused by human<br>a spatio-temporal m<br>prediction in Mad<br>s, roads and wildl                                | uch as Spain more than<br>s. This paper describes<br>odel for human-caused<br>rid, central Spain. The<br>and–urban interface in<br>were the observed daily<br>n. |
| Australian grassland fire danger using inputs from the<br>GRAZPLAN grassland simulation model<br><i>A. Malcolm Gill, Karen J. King</i><br><i>and Andrew D. Moore</i><br>International Journal of Wildland Fire <b>19</b> , 338–345                                                                                                             | (C<br>ul<br>th<br>us<br>w  | GFDI) cannot be as<br>ator and archived<br>e index is possible<br>sing input data for t                       | sessed. However, by<br>weather data, retros<br>e. Two versions of<br>hree types of grass<br>ial fire intensities v | and Fire Danger Index<br>y using a grassland sim-<br>spective examination of<br>GFDI were compared<br>and 54 years of archived<br>vere also calculated for       |

| Turbulent kinetic energy during wildfires in the north central<br>and north-eastern US<br><i>Warren E. Heilman and Xindi Bian</i><br><i>International Journal of Wildland Fire</i> <b>19</b> , 346–363                               | This paper examines the spatial and temporal patterns of ambi-<br>ent atmospheric turbulence in the vicinity of recent wildfire<br>events in the western Great Lakes and north-eastern regions of<br>the United States. Results indicate that large wildfires and peri-<br>ods of rapid fire growth were often associated with episodes of<br>significant turbulence. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Beyond wildfire: perspectives of climate, managed fire and<br>policy in the USA<br><i>Crystal A. Kolden and Timothy J. Brown</i><br><i>International Journal of Wildland Fire</i> <b>19</b> , 364–373                                | We present the results of a survey showing US fire managers do<br>not widely utilise climate information in their prescribed fire<br>programs. We suggest that this stems from a glaring gap we<br>find in US fire policy, which does not currently acknowledge<br>the critical role climate plays in wildfire regimes.                                               |
| Critique of Sikkink and Keane's comparison of surface<br>fuel sampling techniques<br><i>Clinton S. Wright, Roger D. Ottmar</i><br><i>and Robert E. Vihnanek</i><br><i>International Journal of Wildland Fire</i> <b>19</b> , 374–376 | In 2008, Sikkink and Keane compared five methods to estimate<br>surface fuel loading: planar intersect, fixed-area plot, photoload,<br>photoload macroplot and photo series. We feel that study design<br>limitations and incorrect use may have led the authors to infer<br>that the photo series method was the least accurate.                                     |



A pine tree sapling grows through the charred remains of a forest fire. Photo: L. Sawyer