## International Journal of Wildland Fire

Scientific Journal of the International Association of Wildland Fire

| Contents Volume                                                                                                                                                                                                                                                                                    | e 20 Issue 1 2011                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Modelling long-term fire regimes of southern California<br>shrublands<br>Seth H. Peterson, Max A. Moritz, Marco E. Morais,<br>Philip E. Dennison and Jean M. Carlson<br>International Journal of Wildland Fire <b>20</b> , 1–16                                                                    | This paper uses a new fire spread model, HFire, to examine the drivers of the fire regime in southern California shrublands, namely: the number of ignitions per year, the spatial pattern of ignitions, the number of Santa Ana wind events per year, and live fuel moisture.                                                                                                                                                                             |
| Emissions of air pollutants by Canadian wildfires<br>from 2000 to 2004<br><b>David Lavoué and Brian J. Stocks</b><br>International Journal of Wildland Fire <b>20</b> , 17–34                                                                                                                      | Emissions of 21 pollutants from Canadian forest fires were<br>calculated hourly for 2000–04. Outputs from the Canadian Fire<br>Behaviour Prediction System and the Global Environmental<br>Multiscale weather forecast model were combined to assess fuel<br>consumption across the country. This study found that on average,<br>wildfires contributed 10, 30 and 40% of Canadian annual<br>greenhouse gases, CO and black carbon emissions respectively. |
| Effects of fire frequency on prescribed fire behaviour<br>and soil temperatures in dry dipterocarp forests<br><i>Kobsak Wanthongchai, Johann G. Goldammer</i><br><i>and Jürgen Bauhus</i><br><i>International Journal of Wildland Fire</i> <b>20</b> , 35–45                                       | This study investigated how past fire frequencies influence fuel<br>loading, fire behaviour and soil heating during prescribed<br>burning in dry dipterocarp forests. The results indicated that<br>burning can be classed as low-intensity and low-severity surface<br>fire, and there does not appear a need to prescribe burns more<br>frequently than every 6–7 years.                                                                                 |
| On the comparative importance of fire danger rating indices<br>and their integration with spatial and temporal variables for<br>predicting daily human-caused fire occurrences in Spain<br><i>M. Padilla and C. Vega-García</i><br><i>International Journal of Wildland Fire</i> <b>20</b> , 46–58 | A prediction system of daily forest fire occurrence is built for the<br>peninsular territory of Spain at a 10-km spatial resolution. The<br>logistic regression models used for the analysis of historical<br>records allow comparison of the performance of a set of fire<br>danger rating indices and geographical factors, and determina-<br>tion of their relationships with fire occurrence throughout<br>different ecological regions in Spain.      |
| Allocating fuel breaks to optimally protect structures<br>in the wildland–urban interface<br><i>Avi Bar Massada, Volker C. Radeloff and Susan I. Stewart</i><br><i>International Journal of Wildland Fire</i> <b>20</b> , 59–68                                                                    | Wildland fire is a major concern in the wildland–urban inter-<br>face, where human structures intermingle with wildland vegeta-<br>tion. We developed a new method to identify areas for fuel<br>treatments near structures or communities that accounts for<br>explicit structure locations.                                                                                                                                                              |
| Relationships between landscape patterns and fire occurrence<br>within a successional gradient in sagebrush steppe–juniper<br>woodland<br><i>Aaron D. Roth, Stephen C. Bunting and Eva K. Strand</i><br><i>International Journal of Wildland Fire</i> <b>20</b> , 69–77                            | FARSITE, a fire fuel simulation program, was used to create a fire-occurrence grid. <i>FRAGSTATS</i> was used to quantify land-scape patterns across a successional gradient of plant communities of western juniper. Linear regression analysis looking at landscape patterns suggests juniper-dominated, later successional stages influence landscape patterns.                                                                                         |
| Built structure identification in wildland fire decision support<br>David E. Calkin, Jon D. Rieck, Kevin D. Hyde<br>and Jeffrey D. Kaiden<br>International Journal of Wildland Fire <b>20</b> , 78–90                                                                                              | The location of built structures can be accurately mapped<br>relative to probable fire spread to improve real-time, risk-based<br>assessment when developing wildfire management plans.                                                                                                                                                                                                                                                                    |
| A North American regional reanalysis climatology<br>of the Haines Index<br><i>Wei Lu, Joseph J. Charney, Sharon Zhong,</i><br><i>Xindi Bian and Shuhua Liu</i><br><i>International Journal of Wildland Fire</i> <b>20</b> , 91–103                                                                 | A warm-season Haines Index climatology is derived using<br>regional reanalysis data and compared with a previous climatol-<br>ogy using global reanalysis data. The two climatologies are<br>found to be similar for most of North America, with the largest<br>differences appearing along the eastern coastline and in regions<br>of large elevation gradients.                                                                                          |

| Effectiveness of three post-fire treatments at reducing soil<br>erosion in Galicia (NW Spain)<br><i>Cristina Fernández, José A. Vega, Enrique Jiménez</i><br><i>and Teresa Fonturbel</i><br><i>International Journal of Wildland Fire</i> <b>20</b> , 104–114                                                                  | The effectiveness of different stabilisation treatments for redu-<br>cing soil erosion were monitored after a severe wildfire in<br>Galicia (NW Spain). The results showed that straw mulch<br>significantly reduced soil loss relative to the control. Other<br>treatments such as wood-chip mulch and erosion barriers were<br>not effective in reducing soil loss relative to the untreated<br>control. Ground cover results were a key factor in determining<br>post-fire soil losses. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Career stages in wildland firefighting: implications for voice<br>in risky situations<br><i>Alexis Lewis, Troy E. Hall and Anne Black</i><br><i>International Journal of Wildland Fire</i> <b>20</b> , 115–124                                                                                                                 | This study reports on 36 in-depth qualitative interviews with<br>wildland firefighters in the US regarding their experiences of<br>speaking up or remaining silent in dangerous fireline situations.<br>It explores how factors influencing voice (limits to environ-<br>mental perception and social influences), as well as the tactics<br>used, vary between rookies, experienced firefighters and expert<br>veterans.                                                                  |
| Late Holocene geomorphic record of fire in ponderosa pine<br>and mixed-conifer forests, Kendrick Mountain,<br>northern Arizona, USA<br><i>Sara E. Jenkins, Carolyn Hull Sieg, Diana E. Anderson,</i><br><i>Darrell S. Kaufman and Philip A. Pearthree</i><br><i>International Journal of Wildland Fire</i> <b>20</b> , 125–141 | Fire-related debris-flow deposits yield ages of high-severity<br>fire in ponderosa pine and mixed conifer forests on Kendrick<br>Mountain, Arizona. The multicentennial-scale occurrence of<br>fires during the last 4000 years may indicate that a protracted<br>interval is required to accumulate fuels over the steep topo-<br>graphy, rather than regional climatic drivers.                                                                                                          |
| Quantifying the influence of fuel age and weather<br>on the annual extent of unplanned fires in the Sydney<br>region of Australia<br><i>Owen F. Price and Ross A. Bradstock</i><br><i>International Journal of Wildland Fire</i> <b>20</b> , 142–151                                                                           | We used 30 years of fire mapping to model the annual extent of<br>unplanned fire against previous fire and other predictors. Three<br>units of planned fire are required to reduce the unplanned fire<br>area by one unit. However, weather during the fire season was<br>the most influential factor.                                                                                                                                                                                     |
| Emission of biogenic volatile organic compounds involved<br>in eruptive fire: implications for the safety of firefighters<br><i>Toussaint Barboni, Magali Cannac, Eric Leoni</i><br><i>and Nathalie Chiaramonti</i><br><i>International Journal of Wildland Fire</i> <b>20</b> , 152–161                                       | In forest fires, it has been observed that the fire occasionally<br>propagates at unusual speed. This type of accelerating fire<br>propagation is known as eruptive fire for its continuous increase<br>of the rate of spread. The hypothesis of this study is that biogenic<br>volatile organic compounds (BVOCs) accumulate in the vicinity<br>of the fire front and causes this acceleration.                                                                                           |



The wildland–urban interface at Coimbra, Portugal, in August 2005. Photo: A. Ferreira