Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Identification of weather parameters related to regional population outbreak risk of common voles (Microtus arvalis) in Eastern Germany

C. Imholt A C , A. Esther A , J. Perner B and J. Jacob A
+ Author Affiliations
- Author Affiliations

A Julius Kuehn Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forestry, Vertebrate Research, Toppheideweg 88, 48161 Muenster, Germany.

B U.A.S. Umwelt- und Agrarstudien GmbH, Ilmstraße 6, 07743 Jena, Germany.

C Corresponding author. Email: c.imholt@posteo.de

Wildlife Research 38(7) 551-559 https://doi.org/10.1071/WR10196
Submitted: 25 October 2010  Accepted: 11 February 2011   Published: 30 November 2011

Abstract

Context: Common vole (Microtus arvalis) populations can increase to several thousand individuals per hectare during outbreaks. In central Europe such outbreaks usually extend across large areas but there can be significant regional differences in outbreak intensity, general outbreak risk and associated crop damage.

Aims: We tested whether weather parameters can be used to explain the regional variability in outbreak risk of common voles in an area of Eastern Germany where common vole outbreaks are common.

Method: Suitable weather parameters were identified by principal component analysis (PCA). Time series of common vole abundance from 50 locations across 36 500 km2 sampled in 1973–97 were related to weather parameters selected by PCA and multiple linear regression. A hierarchical cluster analysis was used on relevant weather parameters to display the temporal and spatial variability in vole abundance. An overlay of risk class transformed abundances allowed for the identification of appropriate threshold values to define vole outbreaks.

Key results: Weather parameters were closely related to the variation in regional outbreak risk of common voles. Mostly weather parameters in winter and early spring were identified to be highly important. All risk thresholds tested revealed similar patterns for the distribution of risk classes across locations and years. While most years of very low or very high outbreak risk clustered well according to weather parameters, some cases of medium risk classes did not cluster well.

Conclusions: Weather parameters especially in winter and early spring are related to common vole outbreak risk in the following autumn. This is the case for extremely high and low outbreak risks and is largely independent of the choice of particular threshold values for outbreak risk.

Implications: Weather parameters could be used to develop automated forecast systems at the spatial resolution of single weather stations. Combined with other parameters that are easily available, such as information on soil characteristics, such forecasts might be as reliable as more complex biological models developed in the past.

Additional keywords: climate, population dynamics, re-opened burrow counts, rodent outbreak.


References

Berry, R. J., Jackobson, M. E., and Moore, R. E. (1969). Metabolic measurements on an island population of the house mouse during the period of winter mortality. Journal of Physiology-London 201, 101–102.

Blank, B., Jacob, J., Petri, A., and Esther, A. (2011). Topography and soil properties contribute to regional outbreak risk variability of common voles (Microtus arvalis). Wildlife Research 38, 541–550.
Topography and soil properties contribute to regional outbreak risk variability of common voles (Microtus arvalis).Crossref | GoogleScholarGoogle Scholar |

Bonnefoy, X., Kampen, H., and Sweeney, K. (2008). ‘Public Health Significance of Urban Pests.’ (World Health Organization: Copenhagen.)

Brommer, J. E., Pietiainen, H., Ahola, K., Karell, P., Karstinen, T., and Kolunen, H. (2010). The return of the vole cycle in southern Finland refutes the generality of the loss of cycles through ‘climatic forcing’. Global Change Biology 16, 577–586.
The return of the vole cycle in southern Finland refutes the generality of the loss of cycles through ‘climatic forcing’.Crossref | GoogleScholarGoogle Scholar |

Bryja, J., Nesvadbova, J., Heroldova, M., Janova, E., Losik, J., Trebaticka, L., and Tkadlec, E. (2005). Common vole (Microtus arvalis) population sex ratio: biases and process variation. Canadian Journal of Zoology 83, 1391–1399.
Common vole (Microtus arvalis) population sex ratio: biases and process variation.Crossref | GoogleScholarGoogle Scholar |

Chitty, D. (1967). The natural selection of self-regulatory behavior in natural populations. Proceedings of the Ecological Society of Australia 2, 51–78.

Delattre, P., Giraudoux, P., Baudry, J., Musard, P., Toussaint, M., Truchetet, D., Stahl, P., Poule, M. L., Artois, M., Damange, J. P., and Quere, J. P. (1992). Land use patterns and types of common vole (Microtus arvalis) population kinetics. Agriculture Ecosystems & Environment 39, 153–168.
Land use patterns and types of common vole (Microtus arvalis) population kinetics.Crossref | GoogleScholarGoogle Scholar |

Elton, C. S. (1924). Periodic fluctuations in the numbers of animals: their causes and effects. British Journal of Experimental Biology 2, 119–163.

Elton, C. S. (1942). ‘Voles, Mice and Lemmings: Problems in Population Dynamics.’ (Clarendon Press: Oxford.)

Erlinge, S., Göransson, G., Hansson, L., Högstedt, G., Liberg, O., Nilsson, I. N., Nilsson, T., Schantz, T., and Sylvén, M. (1983). Predation as a regulating factor on small rodent populations in southern Sweden. Oikos 40, 36–52.
Predation as a regulating factor on small rodent populations in southern Sweden.Crossref | GoogleScholarGoogle Scholar |

Frank, F. (1953). Die Entstehung neuer Feldmaus-Plagegebiete durch Moorkultivierung und Melioration. Wasser und Boden 11, 342–345.

Frank, F. (1957). The causality of microtine cycles in Germany. The Journal of Wildlife Management 21, 113–121.
The causality of microtine cycles in Germany.Crossref | GoogleScholarGoogle Scholar |

Garding, L. (2005). Interactions driving the population cycle of Arctic small rodents. Polish Journal of Ecology 53, 579–584.

Gliwicz, J. (1990). The first born, their dispersal, and vole cycles. Oecologia 83, 519–522.
The first born, their dispersal, and vole cycles.Crossref | GoogleScholarGoogle Scholar |

Hansson, L. (1984). Composition of cyclic and non-cyclic vole populations. On the causes of variation in individual quality among in Clethrionomys glareolus in Sweden. Oecologica 63, 199–206.
Composition of cyclic and non-cyclic vole populations. On the causes of variation in individual quality among in Clethrionomys glareolus in Sweden.Crossref | GoogleScholarGoogle Scholar |

Hansson, L., and Henttonen, H. (1985). Regional differences in cyclicity and reproduction in Clethrionomys species: are they related? Annales Zoologici Fennici 22, 277–288.

Huitu, O., Koivula, M., Korpimäki, E., Klemola, T., and Norrdahl, K. (2003). Winter food supply limits growth in northern vole populations in the absence of predation. Ecology 84, 2108–2118.
Winter food supply limits growth in northern vole populations in the absence of predation.Crossref | GoogleScholarGoogle Scholar |

Huitu, O., Jokinen, I., Korpimäki, E., Koskela, E., and Mappes, E. (2007). Phase dependence in winter physiological condition of cyclic voles. Oikos 116, 565–577.
Phase dependence in winter physiological condition of cyclic voles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmt1emsLc%3D&md5=4edaaa9fcf10e1b26aef8245cd695302CAS |

Ims, R. A., Henden, J.-A., and Killengreen, S. T. (2008). Collapsing population cycles. Trends in Ecology & Evolution 23, 79–86.
Collapsing population cycles.Crossref | GoogleScholarGoogle Scholar |

Inchausti, P., and Ginzburg, L. R. (1998). Small mammals cycles in northern Europe: patterns and evidence for maternal effect hypothesis. Journal of Animal Ecology 67, 180–194.
Small mammals cycles in northern Europe: patterns and evidence for maternal effect hypothesis.Crossref | GoogleScholarGoogle Scholar |

Jackson, D. M., Trayhurn, P., and Speakman, J. R. (2001). Association between energetics and over-winter survival in the short-tailed field vole Microtus agrestis. Journal of Animal Ecology 70, 633–640.
Association between energetics and over-winter survival in the short-tailed field vole Microtus agrestis.Crossref | GoogleScholarGoogle Scholar |

Jacob, J. (2003). Short-term effects of farming practices on populations of common voles. Agriculture Ecosystems & Environment 95, 321–325.
Short-term effects of farming practices on populations of common voles.Crossref | GoogleScholarGoogle Scholar |

Jacob, J. (2008). The response of small rodents to manipulations of vegetation height in agro-ecosystems. Journal of Integrated Zoology 3, 3–10.
The response of small rodents to manipulations of vegetation height in agro-ecosystems.Crossref | GoogleScholarGoogle Scholar |

Jacob, J., and Tkadlec, E. (2010). Rodent outbreaks in Europe: dynamics and damage. In ‘Rodent Outbreaks – Ecology and Impacts’. (Eds G. R. Singleton, S. Belmain, P. R. Brown and B. Hardy.) pp. 207–223. (International Rice Research Institute: Los Baños, Philippines.)

Kalela, O. (1962). On the fluctuations in the numbers of arctic and boreal small rodents as a problem of production biology. Annales Academiae Scientiarum Fennicae, Series A, IV Biologica 66, 5–38.

Korpimäki, E., Brown, P. R., Jacob, J., and Pech, R. P. (2004). The puzzles of population cycles and outbreaks of small mammals solved? Bioscience 54, 1071–1079.
The puzzles of population cycles and outbreaks of small mammals solved?Crossref | GoogleScholarGoogle Scholar |

Korpimäki, E., Norrdahl, K., Huitu, O., and Klemola, T. (2005). Predator-induced synchrony in population oscillations of coexisting small mammal species. Proceedings. Biological Sciences 272, 193–202.
Predator-induced synchrony in population oscillations of coexisting small mammal species.Crossref | GoogleScholarGoogle Scholar |

Korslund, L., and Steen, H. (2006). Small rodent winter survival: snow conditions limit access to food resources. Journal of Animal Ecology 75, 156–166.
Small rodent winter survival: snow conditions limit access to food resources.Crossref | GoogleScholarGoogle Scholar |

Krebs, C. J., Gaines, M. S., Keller, B. L., Myers, J. H., and Tamarin, R. H. (1973). Population cycles in small rodents. Science 179, 35–41.
Population cycles in small rodents.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3s%2Fls1WrsA%3D%3D&md5=f01c40c80dcd6b46d22b2c86ace8c3f6CAS |

Krebs, C. J., Kenney, A. J., Singleton, G. R., Mutze, G. J., Pech, R. P., Brown, P. R., and Davis, S. A. (2004). Can outbreaks of house mice in south-eastern Australia be predicted by weather models? Wildlife Research 31, 465–474.
Can outbreaks of house mice in south-eastern Australia be predicted by weather models?Crossref | GoogleScholarGoogle Scholar |

Lambin, X., and Krebs, C. (1991). Can changes in female relatedness influence microtine population dynamics? Oikos 61, 126–132.
Can changes in female relatedness influence microtine population dynamics?Crossref | GoogleScholarGoogle Scholar |

Lambin, X., Bretagnolle, V., and Yoccoz, N. G. (2006). Vole population cycles in northern and southern Europe: is there a need for different explanations for single pattern? Journal of Animal Ecology 75, 340–349.
Vole population cycles in northern and southern Europe: is there a need for different explanations for single pattern?Crossref | GoogleScholarGoogle Scholar |

Lauenstein, G. (1990). Entwicklung der Feldmausdichte an einem Überwachungsstandort im Landkreis Wesermarsch. Pflanzenschutz Versuchsergebnisse LWK Weser-Ems 1990. Pflanzenschutzamt Oldenburg , 322–323.

Leirs, H., Stenseth, N. C., Nichols, J. D., Hines, J. E., Verhagen, R., and Verheyen, W. (1997). Stochastic seasonality and nonlinear density-dependent factors regulate population size in an African rodent. Nature 389, 176–180.
Stochastic seasonality and nonlinear density-dependent factors regulate population size in an African rodent.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtVSqsLg%3D&md5=992ea605b6d900d43f5d745aa9fa4941CAS |

Lidicker, W. Z. (2000). A food web/landscape interaction model for microtine rodent density cycles. Oikos 91, 435–445.
A food web/landscape interaction model for microtine rodent density cycles.Crossref | GoogleScholarGoogle Scholar |

McCafferty, D. J., Moncrieff, J. B., and Taylor, I. R. (2003). Winter microclimate field voles (Microtus agrestis) in SW Scotland. Journal of Thermal Biology 28, 397–401.
Winter microclimate field voles (Microtus agrestis) in SW Scotland.Crossref | GoogleScholarGoogle Scholar |

Myllymäki, A., Hansson, L., and Christiansen, E. (1985). Models for forecasting population trends in two species of microtine rodent, Microtus agrestis and Clethrionomys glareolus. Acta Zoologica Fennica 173, 93–101.

Pech, R. P., Singleton, G. R., Salmon, E., Forrester, R. I., and Brown, P. R. (1999). Models for predicting plagues of house mice (Mus domesticus) in Australia. In ‘Ecologically-based Rodent Management’. (Eds G. R. Singleton, L. A. Hinds, H. Leirs and Z. Zhang.) pp. 81–112. (International Rice Research Institute: Los Baños, Philippines.)

Roder, W., Feyerabend, G., and Rogoll, H. (1975). ‘Landwirtschaftlicher Pflanzenschutz.’ (Deutscher Landwirtschaftsverlag: Berlin.) pp. 1–560.

Sellmann, J. (1991). Prognose des Auftretens der Feldmaus Microtus arvalis (PALLAS, 1779). Wissenschaftliche Beiträge der Universität Halle 34, 183–196.

Singleton, G. R., Brown, P. R., Pech, R. P., Jacob, J., Mutze, G. J., and Krebs, C. J. (2005). One hundred years of eruptions of house mice in Australia – a natural biological curio. Biological Journal of the Linnean Society. Linnean Society of London 84, 617–627.
One hundred years of eruptions of house mice in Australia – a natural biological curio.Crossref | GoogleScholarGoogle Scholar |

Singleton, G. R., Belmain, S., Brown, P. R., and Hardy, B. (2010). ‘Rodent Outbreaks – Ecology and Impacts.’ (International Rice Research Institute: Los Baños, Philippines.)

Smith, M. J., White, A., Sherratt, J. A., Telfer, S., Begon, M., and Lambin, X. (2008). Disease effects on reproduction can cause population cycles in seasonal environments. Journal of Animal Ecology 77, 378–389.
Disease effects on reproduction can cause population cycles in seasonal environments.Crossref | GoogleScholarGoogle Scholar |

Spitz, F. (1977). Le campagnol des champs (Microtus arvalis [Pallas]) en Europe. EPPO Bulletin 7, 165–175.
Le campagnol des champs (Microtus arvalis [Pallas]) en Europe.Crossref | GoogleScholarGoogle Scholar |

Spitz, F. (1985). Further development of the forecasting model for Microtus arvalis. Acta Zoologica Fennica 173, 89–93.

Tkadlec, E., and Stenseth, N. C. (2001). A new geographical gradient in vole population dynamics. Proceedings of the Royal Society of London. Series B. Biological Sciences 268, 1547–1552.
A new geographical gradient in vole population dynamics.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvktFynsg%3D%3D&md5=278af877beb263dc245bc6705f0d40bdCAS |

Tkadlec, E., and Zejda, J. (1995). Precocious breeding in female common voles and its relevance to rodent fluctuations. Oikos 73, 231–236.
Precocious breeding in female common voles and its relevance to rodent fluctuations.Crossref | GoogleScholarGoogle Scholar |

Tkadlec, E., and Zejda, J. (1998). Small rodent population fuctuations: the effects of age structure and seasonality. Evolutionary Ecology 12, 191–210.
Small rodent population fuctuations: the effects of age structure and seasonality.Crossref | GoogleScholarGoogle Scholar |

van Wijngaarden, A. (1957). The rise and disappearance of continental vole plague zones in the Netherlands. Verslagen van Landbouwkundige Onderzoekingen 63, 1–21.

Wieland, H. (1997). Untersuchungen zur Migration der Feldmaus (Microtus arvalis PALL.) und ihrer Auswirkungen auf die Fluktuation im Rahmen einer veränderten Agrarstruktur zur Ableitung von Strategien einer integrierten Schadensabwehr. Unpublished report to the German Federal Ministry of Food, Agriculture and Forestry, pp. 1–68.

Zejda, J. (1967). Mortality of a population of Clethrionomys glareolus Schreb. in a bottomland forest in 1964. Zoologické Listy 16, 221–238.

Zhang, Z., Pech, R., Davis, S., Shi, D., Wan, X., and Zhong, W. (2003). Extrinsic and intrinsic factors determine the eruptive dynamics of Brandt’s vole Microtus brandti in Inner Mongolia, China. Oikos 100, 299–310.
Extrinsic and intrinsic factors determine the eruptive dynamics of Brandt’s vole Microtus brandti in Inner Mongolia, China.Crossref | GoogleScholarGoogle Scholar |