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Abstract. Drones have emerged as a popular wildlife research tool, but their use for many species and environments
remains untested and research is needed on validation of sampling approaches that are optimised for unpiloted aircraft.

Here, we present a foreword to a special issue that features studies pushing the taxonomic and innovation boundaries of
drone research and thus helps address these knowledge and application gaps. We then conclude by highlighting future
drone research ideas that are likely to push biology and conservation in exciting new directions.
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Drones are now used widely as a tool for wildlife research in
both aquatic and terrestrial environments (Christie et al. 2016;
Chabot 2018; Joyce et al. 2019). Also known as remotely piloted

aircraft systems (RPAS), unmanned/unpiloted aerial vehicles
(UAV), or when combined with the technology and software
surrounding their operation and use, unmanned/unpiloted air-

craft systems (UAS), drones span a wide variety of sizes and
platforms. For wildlife research, typically small UAVs, under
10 kg, are employed because of their wide availability, cost

effectiveness, and ability to carry sensors that meet many
objectives. Drones can accomplish a variety of tasks ranging
from remote sensing to monitoring animal populations and even
individuals, from their behaviour to their body condition

(Chabot and Bird 2015; Linchant et al. 2015; Fiori et al. 2017;
Kiszka and Heithaus 2018; Torres et al. 2018; Fust and Loos
2020; Corcoran et al. 2021; Graves et al. in press). Moreover,

they have the potential to collect data on wildlife populations
and individuals in inaccessible areas, in a way that involves
lower cost, and less risk, invasiveness and labour than do more

traditional approaches, including direct observations from the
ground, the water or piloted vehicles (Christie et al. 2016; Fiori
et al. 2017;Wang et al. 2019; Corcoran et al. 2021; Preston et al.
2021). Accordingly, drones are increasingly being recognised

for their potential to advance wildlife biology and conservation
by enabling, for instance, widespread ground-truthing of satel-
lite imagery and opportunities for multi-modal (e.g. optical and

acoustic) animal monitoring, and by facilitating enforcement of
animal protections (e.g. by detecting poaching; Chabot and Bird
2015; Nowak et al. 2018; Joyce et al. 2019; Wang et al. 2019;

Fust and Loos 2020). However, this promise has yet to be fully
realised, in part because of technological and legal constraints,
including the limiting effect of battery life and size on load

capacity and flight time, as well as flight restrictions that are
increasing in many countries around the globe. Furthermore, the
use of drone use for many species and environments remains

untested and research is needed on validation of sampling
approaches that are optimised for unpiloted aircraft (Linchant
et al. 2015; Christie et al. 2016; Corcoran et al. 2021).

Featuring studies from both aquatic and terrestrial ecosys-
tems, this special issue of Wildlife Research highlights the
environmental and taxonomic reach of drone research today
for observing wildlife and, as a corollary, the myriad ways in

which drones are helping overcome limitations of and comple-
ment more traditional sampling approaches. For example,
Aubert et al. (2022) reported a pioneering drone survey of a

West African crocodilian assemblage. They found that although
they were less effective than nocturnal visual (on-the-ground)
surveys, drone surveys were better at detecting crocodilians than

were diurnal visual surveys, in large part because their aerial
perspective overcomes on-the-ground visual obstructions
caused by plants and other forms of habitat complexity. More-
over, drones alleviated many of the considerable logistical

constraints imposed by both traditional techniques. This marked
efficiency advantage is critical in the system studied by Aubert
et al. (2022), and many others, where focal taxa are simulta-

neously imperilled and difficult tomonitor. Sudholz et al. (2022)
pushed a different research boundary, showing that drone
surveys are an effective means of monitoring invasive species,
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in their case Rusa deer (Rusa timorensis) in Queensland,
Australia, particularly when paired with automated detection

via machine learning. Finally, Ejrnæs and Sprogis (2022) used
drones off the coast of Western Australia to establish patterns of
resting behaviour and energy expenditure in humpback whale

(Megaptera novaeangliae) mother–calf pairs (Fig. 1a), provid-
ing crucial baselines from an undisturbed population for under-
standing anthropogenic impacts.

Just as importantly, this special issue also showcases cutting-

edge methods and methodological caveats that should further

improve the breadth and rigour of drone research and may

also catalyse development of new applications. For example,

Saunders et al. (2022) demonstrated that, across a range of

landscapes, drone-based radio-tracking allows for much greater

spatial coverage than does tracking from the ground. The

viewshed analyses Saunders et al. (2022) used to quantify spatial

coverage also enabled them to identify telemetry ‘blind spots’

that would need to be surveyed in a more targeted fashion to

avoid missing or losing tagged animals. Both Howell et al.

(2022) and McMahon et al. (2022) illustrated the effectiveness

of drones equipped with thermal sensors, in contrast to more

conventional wildlife monitoring approaches. Namely, Howell

et al. (2022) showed that thermal imaging drones outperform the

two more conventional field-based approaches of spotlighting

and diurnal radial searches for detecting the koala

(Phascolarctos cinereus), a cryptic forest-dwelling species.

Similarly, McMahon et al. (2022) demonstrated that drone

surveys estimate white-tailed deer (Odocoileus virginianus)

densities as well as conventional pellet counts, while also

allowing for greater efficiency and temporal coverage

(Fig. 1b). Finally, using decoys to stand in for green sea turtles

(Chelonia mydas), Odzer et al. (2022) showed that factors

impeding visibility (glare, water depth, substrate vegetation)

can markedly degrade subsurface drone detection performance

in marine systems, leading them to caution that identifying and

accounting for environmental limitations on detection efficacy

are crucial components of drone survey design.

Looking ahead

As the role of drones in wildlife research continues to expand,
we envision the insights they provide pushing biology and
conservation in many exciting new directions. Here, while

acknowledging that a full accounting of these future drone
research directions is beyond the scope of this foreword, we
highlight four such frontiers, namely: (1) individual behaviour

for species that challenge focal observation and tracking via
more conventional means; (2) monitoring the health of free-
ranging animals; (3) assessing the conflicts betweenwildlife and
humans; and (4) enhanced habitat characterisation.

Focal observation has long been a staple in animal behaviour
research, merging detailed data collection capacity with the
flexibility to monitor individuals or groups and to record

spontaneous and unforeseen events (Altmann 1974). Although
emerging biologging and tracking technology increasingly
enables researchers to infer patterns of animal behaviourwithout

direct visual observation (Smith and Pinter-Wollman 2021), a
growing literature cautions of the disturbance responses that can
bias drone surveys for some species. In this issue, for example,

Landeo-Yauri et al. (2022) show that drone flights elicit persis-
tent changes to respiration rates and activity budgets in captive
Antillean manatees (Trichechus manatus manatus). For species
without such effects, drones have the potential to address an

important data gap. The unparalleled insights that can stem from
continuously viewing an individual as it moves through its
environment have thus far been largely restricted to species that

can be watched (or filmed) directly and circumstances where
more cryptic taxa are captured remotely on video (e.g. by
motion-activated cameras). UAVs are being used increasingly

to conduct focal and collective animal observations (Rieucau
et al. 2018; Smith and Pinter-Wollman 2021), although typically
while being operated manually (e.g. cetaceans, Torres et al.

2018, 2020; Ejrnæs and Sprogis 2022; rays, Oleksyn et al. 2021).

Accordingly, the next advance is to program drones to automat-
ically follow individual animals, or even groups of animals, as
they move within and across habitats. Using drones aided by

(a) (b)

Fig. 1. (a) Aerial photograph of a humpback whale (Megaptera novaeangliae) mother–calf pair taken during a

drone-based focal observation. Ejrnæs and Sprogis (2022) used these drone focal follows to explore patterns of

resting behaviour and energy expenditure on a breeding ground off the coast of Western Australia. Photo credit:

Kate Sprogis. (b) McMahon et al. (2022) launched a fixed-wing drone equipped with a thermal infrared sensor to

estimate white-tailed deer (Odocoileus virginianus) population density. Photo credit: Michael McMahon.
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artificial neural networks for image processing, such follows
(of individual animals at least) have been conducted success-

fully in laboratory environments, but automated tracking under
field conditions has yet to be attempted (Straw 2021). Drone
deployments of this nature offer many exciting research possi-

bilities, including identification of spatiotemporal patterns of
cryptic behaviours (e.g. reproduction), exploration of inter-
and intraspecific interactions involving cryptic taxa or in

inaccessible environments, and comparisons of animal behav-
iour with and without human observers or other forms of
disturbance.

Over the past few years, drones have also proved their value

as a tool for investigating individual body condition and size by
using photogrammetric methods, and for assessing (and poten-
tially monitoring) individual- and population-level health status

(e.g. nutritional status) of a range of species, particularly in
marine environments (e.g. Pirotta et al. 2017; Allan et al. 2019;
Stewart et al. 2021a). Recent advances have shown that the

precision of photogrammetric methods can be dramatically
improved using deep learning, reducing the amount of time
spent inputting information manually, which will facilitate

expansion and development of photogrammetric methods to
automatically measure individual animals with the greatest
precision (Gray et al. 2019). By implication, drone-based
assessments of individual animal condition and size offer a

new means of understanding impacts of environmental condi-
tions and degradation associated with human activities on the
health, nutritional status, and population dynamics of a range of

species, in both aquatic and terrestrial ecosystems. Furthermore,
continuous monitoring of changes to body condition and size of
individual animals within populations using drones may allow

researchers to evaluate long-term trends in associations between
these measures and human activities and impacts (e.g. Stewart
et al. 2021b).

Another potential area of research involves the use of drones
to assess and monitor spatial and temporal patterns of conflicts
between humans and wildlife. Both on land and in coastal
marine environments, interactions between human activities

(e.g. agriculture, tourism, urbanisation) and wildlife may lead
to a diversity of challenges (e.g. crop destruction, aggressive
interactions between wildlife and tourism), which drones could

be employed to monitor at multiple spatial and temporal scales,
including in real time. For example, Rutten et al. (2018) used
drones to assess the spatial extent of and therefore identify the

factors affecting damage to plantations caused by wild boars
(Sus scrofa) across multiple habitats with considerable accuracy
(Rutten et al. 2018). Such drone monitoring could help shape
adaptive management policy aimed at reducing human–wildlife

conflict and promoting coexistence.
In addition to animal observations, drones can advance

understanding of animal distributions and improve habitat

prioritisation for wildlife conservation through enriched spa-
tiotemporal characterisation of wildlife habitat from local to
landscape scales. Spatially extensive maps of vegetation,

topography and other landscape features are powerful tools
that support analyses of habitat selection and suitability map-
ping for wildlife to investigate innumerable research questions

about their habitat requirements and responses to environmen-
tal perturbations such as anthropogenic development and

climate change. However, vegetation maps are often inade-
quate in their specificity and accuracy for fine-scale wildlife

applications. Drones can provide accurate, high-resolution
maps of specific vegetation types or species in focal areas or
across a network of sites, which, when combined with other

remote-sensing imagery, enables the development of more
extensive maps (Kattenborn et al. 2019; Rigge et al. 2020;
Bhatnagar et al. 2021). Research has shown that many tradi-

tional field measures of vegetation can be replicated from
drone imagery (Alonzo et al. 2018; Räsänen and Virtanen
2019; Sankey et al. 2021), which can provide spatially contin-
uous measures over much larger areas to improve accuracy of

training data for broad-scale mapping. Inclusion of drones in
vegetation monitoring programs that are used to develop
vegetation maps from satellite imagery (e.g. Allred et al.

2021) has high potential for improving these mapping efforts
but requires extensive research on the capabilities of drone
imagery to identify vegetation species and assessment of

practical limits to sampling effort and equipment. For example,
species identification can be enhanced with data from drone
flights, including three-dimensional information from LiDAR

or structure-from-motion, hyperspectral imagery, and plant
phenology measured from multiple flights. In addition, each
of these data types can directly describe important habitat
attributes for many wildlife species, such as forest canopy

complexity for arboreal species (e.g. Johnston and Moskal
2017) or timing of green-up for migratory species (e.g. Aikens
et al. 2017). Finally, the flexibility and cost effectiveness of

drones for frequent, targeted deployment with several sensor
types allow researchers to test and optimise acquisitions of
remotely sensed data to explore new approaches for character-

ising habitat that explain animal distributions.
Undoubtedly, drones have emerged as powerful and exciting

tools for wildlife research with much potential that remains

unrealised. As researchers continue to evaluate the capabilities
of this technology, we need to consider how drones fit into a
broader vision for wildlife research and conservation, including
as a means for collecting citizen-science data (Preece 2016).

Integration of drones into multi-scale management programs
with diverse objectives to provide complete research, monitor-
ing and assessment capabilities will be a challenging but

worthwhile endeavour. This new aerial perspective, along with
advancing sensors, analytical software, and animal tracking
techniques, is inspiring researchers to think creatively about

how to answer questions about wildlife, and we look forward to
the discoveries that lie ahead.
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