
How Australian mammals contributed to our understanding
of sex determination and sex chromosomes

Jennifer A. Marshall Graves

School of Life Sciences, La Trobe University, Melbourne, Vic. 3186, Australia, and Research School of Biology,
Australian National University, Canberra, ACT 0200, Australia. Email: j.graves@latrobe.edu.au

Abstract. Marsupials and monotremes can be thought of as independent experiments in mammalian evolution. The
discovery of the human male-determining gene, SRY, how it works, how it evolved and defined our sex chromosomes, well
illustrates the value of comparing distantly related animals and the folly of relying on humans andmice for an understanding
of the most fundamental aspects of mammalian biology. The 25th anniversary of the discovery of SRY seems a good time
to review the contributions of Australian mammals to these discoveries.

The discovery of the mammalian sex determining gene, SRY, was a milestone in the history of human genetics. SRY
opened up investigations into the pathway by which the genital ridge (bipotential gonad) becomes a testis. Studies of
Australian mammals were important in the story of the discovery of SRY, not only in refuting the qualifications of the
first candidate sex-determining gene, but also in confirming the ubiquity of SRY and raising questions as to how it works.
Studies in marsupials also led to understanding of how SRY evolved from a gene on an autosome with functions in the
brain and germ cells, and to identifying the ancestors of other genes on the human Y. The discovery that platypus have
sex chromosomes homologous, not to the human XY, but to the bird ZW, dated the origin of the therian SRY and the XY
chromosomes it defined. This led to important new models of how our sex chromosomes function, how they evolved,
and what might befall this gene and the Y chromosome it defines.
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Introduction – sex before SRY

For millennia, people wondered how a baby becomes a boy or a
girl. The ancient Greeks had some very imaginative hypotheses,
including the relatively rational notion that sperm from the left
testicle determined a girl and from the right determined a boy.

The discovery of human sex chromosomes in the 1950s
showed that females have two copies of a large X chromosome;
males have a single X and amuch smaller Y (they got their name,
not from their shape at mitosis, but because the first sight of an X
in a bug was so puzzling that it was called ‘X for unknown’).
Females produce eggs that each have a single X (because
they produce only one type of gametes, females are called
‘homogametic’). Males produce sperm, half of which receive
an X, and half a Y (because they produce two kinds of gametes,
males are called ‘heterogametic’). Thus the sex ratio of the
offspring is expected to be half boys and half girls.

Initially, it was thought that what determines sex is the
number of X chromosome a baby receives: two X chromosomes
produce a female and a single X produces a male. This was not
a crazy idea because it was already known in the 1950s that
that’s the way the system works in fruit flies (Bridges 1925).
What showed this to be wrong was a study of people born
with aberrant numbers of sex chromosomes: babies born with
a single X chromosome and no Y were girls with Turner’s
syndrome (Ford et al.1959), andbabieswith twoXchromosomes

as well as a Y were boys with Klinefelter’s syndrome (Jacobs
and Strong 1959). The testis-determining factor (TDF) had to be
a gene on the Y chromosome (Fig. 1).

TDFwas shown to act as a male dominant entity by removing
the testes from rabbit embryos and allowing them to complete
development (Jost 1970); they all developed as females. Doing
the opposite – removing the ovaries from XX rabbit embryos –
did not switch their sex; again, they were all born female. This
implied that a positive signal was required for male development,
and in its absence a female develops. Females became known
as the ‘default sex’ because of this result.

What did TDF do? The human embryo has a ridge of cells
attached to the embryonic kidney. This genital ridge is the same
in early XX and XY embryos, so it is called the bipotential
gonad. In XY embryos the TDF gene kick-starts a cascade of
genes that differentiates this genital ridge into a testis. The testis
makes androgens, and the androgens make the baby male. In
the absence of a Y chromosome and TDF (and androgens),
nothing happens for a few more weeks, after which the ovary-
determining pathway is established.

Sex chromosomes – the conserved X and the wimpy Y

Even the relatively primitive cytological techniques of the 1970s
and 1980s were sufficient to reveal that mammalian sex
chromosomes are quite weird.

Journal compilation � CSIRO 2016 www.publish.csiro.au/journals/ajz

CSIRO PUBLISHING

Australian Journal of Zoology, 2016, 64, 267–276 Review
http://dx.doi.org/10.1071/ZO16054

mailto:j.graves@latrobe.edu.au


The X chromosome is a relatively normal, middle-sized
chromosome with a complex g-banding pattern. Sex-linkage
studies showed that many genes were located on the X; these
revealed themselves because boys, having only a single copy,
expressed mutations such as colour blindness and haemophilia
that were due to a missing or abnormal colour vision pigment or
a clotting factor. Early gene mapping assigned to the X many
classic enzyme loci that had no role in sex.

The Y chromosome was very different, being much smaller
and showing very aberrant banding.When stained by fluorescent
chemicals that reveal repetitive sequence, it literally glows
in the dark. Attempts to pin genes on it were completely
unsuccessful, despite early claims to have identified male-to-
male transmission of characters such as hairy ears.

Early studies showed that sex chromosomes are monophyletic
across placental mammals. The X chromosome is highly
conserved in size (~5% of the genome) and gene content, giving
rise to the concept (Ohno’s Law) that the X is completely
conserved in mammals (Ohno 1967). Sequencing confirms that
the gene content of the X is virtually invariant, and even gene
order is conserved between human and the distantly related
elephant (Delgado et al. 2009). In contrast, the size and gene
content of the Y chromosome is more variable.

Marsupial mammals also have an XY system, and early gene
mapping showed that the marsupial X shares genes with the
eutherian X. The first genomic surprise to come out of marsupial
genetics was the finding that, although the genes on the
marsupial X are all homologous with genes on the human X,
about a third of the X genes in eutherians are autosomal in
marsupials (Fig. 2) (Wilcox et al. 1996). Comparison with
the genomes of birds shows that the marsupial X and the
autosomal regions represent separate conserved genomic blocks.
The marsupial X represents an ancient X, to which the autosomal
block was added in an ancient eutherian after the divergence
from marsupials. The eutherian Y has homology to the same two

ancestral blocks, but most of it derives from the recently added
block.

Marsupials and the molecular search for the
male-determining gene

With the realisation that TDF lay on the Y, efforts redoubled
to characterise the DNA of the human Y and find the active
gene. This was tough because the Y is largely composed of
repetitive sequence. Since the discovery of non-coding RNAs
with functions in gene regulation we are more careful about
dismissing such repetitive sequences as ‘junk DNA’, but most of
the long arm comprises simple sequences repeated many
thousands of times – what I call hard core junk DNA. One of
these sequences was identified on sex chromosomes of snakes
as well as humans, and for a time was thought to act as the
sex-determining signal (Singh et al. 1994).

The only other sighting of a gene was gained by immunising
female mice with cells frommales of the same strain – they made
a weak antibody that suggested there was a male-specific gene
called HYA (for Human Antigen on the Y) (Ohno 1978). The
search for HYA went on for many years before it was ruled out
as the sex-determining gene because it mapped at the wrong
end of the human Y (Simpson et al. 1987). In fact, HYA turns
out to be an amalgam of products, different in different animals;
any product of a widely expressed Y gene will contribute male-
specific determinants.

The hunt for TDF really revved up in the 1980s, when
it became at least theoretically possible to positionally clone
genes – that is, pinpoint them by finer and finer mapping, then
capture the DNA in a virus or bacterial vector.

It’s hard to map the human Y chromosome. You can’t use
ordinary genetic mapping procedures because the Y does not
recombine; nor is it amenable to somatic cell mapping because
the Y is usually lost from cell hybrids. The best approach was
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Fig. 1. The testis-determining factor and the sex-determining pathway. (a) In therian mammals, females have two copies of the X chromosomes and males
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to study DNA from patients having only parts of a Y. It was
discovered that some people lacked the whole long arm of the
Y – and they were male (Affara et al. 1987). TDF therefore had
to lie on the small short arm of the Y.

Deletion mapping was used to refine the position of TDF.
Most informative were male patients who apparently had two
X chromosomes. However, many of these patients had a tiny bit
of the tip of the Y exchanged with the tip of the X, and this could
be spotted by looking for Y-borne repetitive sequences. The
search focussed on this bit of the Y (Fig. 1). It might be tiny, but
it was full of repetitive sequences that made it hard to map and
assemble sequence.

David Page’s group at MIT were the first to find a gene in
this region (Page et al. 1987). ZFY looked like an excellent
candidate; it was a zinc finger gene, related to many transcription
factors, appropriate for a gene whose job it was to turn on a
cascade of testis-differentiating genes. ZFY was conserved on
the Y chromosome in other placental mammals, including
chimps, mouse, cats and horses, as you would expect of a gene
crucial for reproduction and survival. And it was expressed
in the testis. The only puzzling attribute was that it had a close
homologue (ZFX) on the short arm of the X.

This paper created quite a sensation. I waved it in front of
my human genetics class as a splendid example – one of the
first – of cloning a gene via its location (positional cloning),
which was later to transform human genetics. But I was not then
directly involved in sex and the Y chromosome, being more
interested in the evolution of the X chromosome and epigenetic
changes involved in dosage compensation (I still am: Graves
2015), using comparisons between humans, mice and the
distantly related marsupial mammals.

All that changed with a phone call from David Page in
Boston, requesting me to check out the position of ZFY in

marsupials. Any decent candidate for a universal mammal sex-
determining gene should rightly map to the Y in all mammals.

I gave the job to two of my Ph.D. students. Andrew Sinclair
was finishing up his laboratory-work – literally in his last week –
mapping the orthologues of human X-borne genes in marsupials.
He was curious about ZFY because he had found that genes
near ZFX on the short arm of the human X map, not to the X, but
to chromosome 5 in kangaroos; they are part of the recently
added region. Jamie Foster had just arrived in my laboratory,
and proposed to work on marsupial ZFY and sex determination.
I suggested that they collaborate on the mapping, thinking
they might get a little ‘me too’ paper from the work.

Andrew and Jamie set about preparing a radioactive version
of Page’s ZFY probe. Quite coincidentally, Andrew received
another version of the ZFY probe from Peter Goodfellow,
then working in London, to whom he had already applied for
a postdoc position. They hybridised the radioactive probes
in situ to the chromosomes of two marsupial species whose
cells we can grow in the laboratory: our model kangaroo, the
tammar wallaby (Macropus eugenii), and the fat-tailed dunnart
(Sminthopsis crassicaudata). Then they covered the slides with
autoradiographic film, and we waited.

When the preparations were finally ready to be developed,
Andrew and Jamie stayed late in the laboratory counting grains
over chromosomes in hundreds of cells, a tedious task. Andrew
called me at 1 : 00 a.m. to tell me, ‘ZFY is not on the Y. It is on
chromosome 5 in kangaroo.’ Startled and excited, I advocated
counting more grains produced by both probes in both species.
This produced deep groans, but by morning it was clear. ZFY
is autosomal in kangaroos (on chromosome 5) and the dunnart
(on chromosome 3), precisely the locations of the other genes
Andrew had mapped from the added region of the X. This
was verified by Southern blot analysis: a ZFY probe produced
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Fig. 2. How kangaroos revealed the origin of our sex chromosomes. (a) Radioactive in situ hybridisation of probes to human X
genes, expressed as mean grains/length normalised to average (0). Human Xq genes GLA, PLP, F8 map to the tammar wallaby
X. Human Xp genesDMD,MAOAmap to tammar wallaby chromosome 5 Importantly the human ZFY probe mapped to the same
region of tammar wallaby chromosome 5. (b) Chromosome painting of chromosomes from human male with DNA prepared
from flow-sorted tammar wallaby X, tagged with fluorochromo. Kangaroo X shows homology to the bottom 2/3 of the human
X. (c) Model of relationship between kangaroo X and human sex chromosomes. Blue represents the region of the X conserved in
therian mammals (X conserved region XCR) and green the region added to the X in eutherians (XAR). The human Y shows
homology to both regions (YCR blue and YAR green), but little of the original YCR remains.
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male-specific bands in eutherians, but not in marsupials (Fig. 3).
An autosome would be a strange place for a sex-determining
gene, and the obvious implication was either that marsupials
used a different gene for sex determination than did placental
mammals, or that ZFY was the wrong gene.

Rather than the little ‘me too’ paper I had envisaged, Andrew
and Jamie produced a cover story in Nature (Sinclair et al.
1988). Both students went on to make fundamental discoveries
about human sex determination in Peter Goodfellow’s laboratory.

Our conclusion that ZFY was the wrong gene was soon
confirmed independently by the finding (by another young
Australian, Peter Koopman, a postdoc in Robin Lovell-Badge’s
London laboratory), that ZFY was expressed in the germ cells
of the mouse testis, but not in the somatic cells (Koopman et al.
1989), where the sex determination signal had to be received.

Discovery of SRY

Back to the drawing board on both sides of the Atlantic. Andrew
Sinclair left Melbourne for London to join a renewed search
for the human sex-determining gene in Peter Goodfellow’s
laboratory. The group used DNA from patients with smaller and
smaller fragments of a Y chromosome. It was a difficult and
frustrating search, using the techniques of the day to isolate
small fragments cloned in virus or bacteria. Repetitive sequence
was always a barrier to progress. Jamie broke off a vacation
in Europe to visit them – and stayed for the year’s search, despite
phone calls from his hapless supervisor in Melbourne, pleading
‘Just another week . . .?’.

It took another year before Goodfellow’s team, led by
Andrew Sinclair and Mark Palmer, found a tiny gene buried in

the repetitive junk of the Y chromosome. Non-committally,
they called it SRY for ‘Sex-determining Region on the Y’
(Sinclair et al. 1990).

Evidence began stacking up that SRY was the right gene.
Most telling was the discovery of three girls who had a Y
chromosome but a mutated version of SRY (Berta et al. 1990).
And Peter Koopman produced XX mice transgenic for the
mouse version of SRY to produce two XX male mice that
featured on the cover of Nature (one the famous ‘Randy’)
(Koopman et al. 1991).

As would be expected of the sex-determining factor, SRY
was found to be expressed in the bipotential gonad of a mouse
embryo in a narrow time window before testis differentiation.
It was conserved on the Y chromosome in a range of placental
mammals. Jamie returned to Melbourne and, with the help of
talented Research Assistant Francine Brennan, showed that it
was also on the Y in marsupials (Foster et al. 1992) – phew!

What does SRY do?

SRY is a small gene with no introns. Its sequence was initially
a puzzle, with no immediate lookalikes in any databases. It
turned out to be a member of a large family of SOX genes that
all share the HMG box (an 80 amino acid domain that binds
DNA) with SRY (hence SOX), and with a group of High
Mobility Proteins (hence HMG) (Gubbay et al. 1990b). Many of
them turn out to have important functions in development; for
instance, SOX2 is one of the pluripotency factors that go into
the mix that produces induced pluripotent stem cells (Avilion
et al. 2003).
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Biochemical tests on SRY were difficult and expensive
because there is never much protein made and it is around for
only a crucial day during mouse development. However,
Vince Harley, another Australian postdoc in Peter Goodfellow’s
laboratory, persevered and showed that the SRY protein bound
DNA at a consensus sequence and bent it through a specific
angle, which was disrupted in sex-reversing SRY mutations
(Harley and Goodfellow 1994).

SRY was expected to be an on/off switch. Where SRY is
present, downstream genes are activated to differentiate the
genital ridge into a testis. In the absence of SRY, four weeks pass
before an alternate ovary differentiation pathway is activated.

The gonad differentiation network

We all hoped that once the testis-determining gene had been
isolated, it would be easy to walk down the testis differentiation
pathway, and the alternative ovary-determining pathway. Other
steps should give way their secrets, falling like a line-up of
dominoes. But it has not been that simple. The pathway turns
out to be more of a network, full of checks and balances; some
genes promote testis differentiation or maintenance, others
oppose it (Fig. 1b).

The immediate target of SRY remained elusive for four years,
until SOX9 was discovered by two independent investigations
of a rare sex-reversing condition (Foster et al. 1994; Wagner
et al. 1994). Jamie Foster, now a postdoc in Goodfellow’s
laboratory, which had just moved to Cambridge, had wearied
of difficult biochemical investigations of SRY, and turned his
attention, instead, to a condition called campomelic dysplasia
(CD). CD is a lethal birth deformity in which the long bones are
bent. XY babies with this condition often have female genitalia,
suggesting a mutation that affects sex determination as well as
bone formation.

Jamie investigated the DNA of CD babies who had a
chromosome rearrangement and got a surprise – close by the
break-point was one of the SOX genes. SOX9 was a highly
conserved gene – with introns – that is one of the first genes
expressed in the developing testis, as well as determining the
cartilage that frames bone deposition. SOX9 turns out to be
pivotal in sex determination in all vertebrates.

Other genes in the sex-determining network have since been
identified by studying sex-reversal syndromes. The geneDMRT1
was identified at the tip of chromosome 9, deletion of which
producesXYsex-reversed females (Raymond et al.1999;Calvari
et al. 2000). Interestingly, this gene also turns out to be vital
for sex determination in birds, lying on the Z chromosome but
not the W, and determining sex by its dosage: two copies are
required for male development in ZZ eggs and a single copy
permits female development of ZW eggs (Raymond et al.
1998; Smith et al. 1999, 2009). It has a very long association
with sex, being involved even in fruitflies and worms, and the
same gene, or a copy of it, turns out to be sex determining in
a variety of vertebrates (Graves 2013).

Some genes, such as SF1 and WT4 were isolated from
patients with syndromes that affected the pathway upstream,
even before a bipotential gonad was formed. Other genes were
clearly downstream; for instance, mutation of the AR gene on
the X chromosome that makes a nuclear receptor for androgens

(Lyon and Hawkes 1970) produces patients who are outwardly
female, although they have internal testes and make, but cannot
use, androgen (Migeon et al. 1981).

Other genes in the network were identified by sex reversal
in other animals: mice, dogs, even goats (Meyers-Wallen et al.
1999; Pailhoux et al. 2002). It’s the same pathway in all
mammals, so a gene cloned from one animal will have a
homologue, doing much the same job, in humans.

Classical studies that showed the Y chromosome to have
a male-dominant effect gave rise to the concept that female
development was the ‘default’ position in humans and other
mammals. This dismissive attitude was hardened by the
observation thatmutations in several genes in the testis pathway –
right down to the androgen receptor – produced a female
phenotype. However, not surprisingly, making an ovary in an
XX embryo is every bit as demanding as making a testis. We
now know of mutations in several genes, such as RSPO1, that
block or destabilise ovary determination (Parma et al. 2006),
and find that several gene pairs exert a yin/yang influence on
the direction of gonad development (Fig. 1b).

The checks and balances in the gonad differentiation network
are complex, with several gene pairs working to promote or
reverse a step (Sekido and Lovell-Badge 2013; Wilhelm et al.
2013; Eggers et al. 2014). Besides DMRT1, several other genes
are dosage sensitive; for instance, too little SOX9 produces XY
females (with campomelic dysplasia), but too much produces
XX males.

The network now boasts more than 30 genes, and ongoing
research turns up more. Are all organs – liver, heart, brain –

regulated in such a complex way? Or is sex special because of
the unique evolutionary history of SRY?

Platypus and the origin of SRY and mammal sex
chromosomes

It is tempting to believe that sex in other animals works much
the same as it does in humans, with a male-dominant SRY gene
on the male-specific Y calling the shots.

This is decidedly not the case. There is no SRY outside
mammals, and other genes control gonad differentiation and
sex determination (Smith et al. 2009; Kikuchi and Hamaguchi
2013; Chen et al. 2014). Nor are the sex chromosomes
homologous outside mammals. For instance, comparative gene
mapping, and, more recently, whole genome sequencing,
shows that the bird ZW pair is homologous, not to the human
XY, but to parts of human chromosomes 5 and 9 (Nanda et al.
1999). The snake ZWpair is different again, and so is the sex pair
in the Australian dragon lizard (Ezaz et al. 2009).

Astonishingly, our work with the more distantly related
platypus showed that even monotreme mammals have no SRY
(Fig. 4c) (Wallis et al. 2007). Their bizarre multiple sex
chromosomes (Fig. 4a, b) (Grutzner et al. 2004; Waters et al.
2005) are homologous, not to the human XY, but to the bird
ZW (Fig. 4d) (Veyrunes et al. 2008). This allows us to date
the beginnings of our sex chromosomes to after the divergence
of therian mammals from monotremes 190million years
ago, but before the marsupial–eutherian divergence 160million
years ago.
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There has therefore been considerable turnover of sex
chromosomes in vertebrate evolution, and this has been driven
by different sex-determining genes (Graves 2013). We know
something of this process, which is parallel in all lineages of
mammals, other vertebrates and even insects.

It all starts when a new sex-determining gene, SRY for
instance, arises on one member of a pair of autosomes. This
proto-Y still pairs and recombines with its partner, now a
proto-X. But other genes nearby on the Y are now selected
for a male function, and pretty soon recombination in this
region is driven lower by selection to keep together a male-
specific package of genes.

Low recombination is the kiss of death for any genome
region because it prevents reconstitution of a mutant-free Y,
so the region of the Y including SRY rapidly degenerates
as genes mutate and are ultimately lost (Charlesworth 1991;
Graves 2006). This explains why the Y is such a wimp; it
retains only 45 genes, compared with the 1600-odd genes
it started with. And it explains why most of the genes on the

male-specific part of the Y have partners on the X from which
they obviously evolved.

The ultimate endpoint – complete loss of the Y and
replacement of SRY by a novel system, is predicted to occur
in a few million years (Aitken and Graves 2002). It has
already occurred in two rodent lineages (Just et al. 1995;
Kuroiwa et al. 2010), although the Y in humans and
other primates appears to be more stable (Hughes and Rozen
2012).

The same process in reverse is observed with the
degradation of the female-specific W chromosome in snakes
and birds. We can see evolutionary intermediates in several
lineages; for instance, boid snakes and the ancient flightless
ratite birds such as emus and ostriches have W chromosomes
that are undifferentiated or only partly degraded.

Thus the evolution of SRY was the crucial event that initiated
the evolution of the mammal XY sex chromosomes. And
platypuses provided the critical start-point of the evolution of our
XY pair and SRY.
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Marsupials and the evolution of SRY

How did SRY evolve? The answer came in the form of another
SOX gene, and again from work done in marsupials.

In Jamie Foster’s hunt for marsupial SRY, he demonstrated
many related genes in the tammar and dunnart genomes, the
homologues, presumably, of the Sox family that had been
described in the mouse (Gubbay et al. 1990a). One of these
(SOX3) showed clear dosage differences in marsupials: twice
as much in XX females as in XY males, an indication that it was
on the X chromosome (Fig. 3a).

We found that SOX3 was the SOX gene most closely related
to SRY, and we suggested that it represented the ancestor of
SRY (Foster and Graves 1994). SOX3 is normally expressed in
the central nervous system and in germ cells, but not in the
somatic cells of the testis, so it has no normal role in sex
determination.

Twenty years later, this idea gains support from the finding
of XX male babies with no SRY, in whom SOX3 is expressed,
not just in the central nervous system and germ cells, but in the
somatic cells of the testis (Sutton et al. 2011). Evidently, SOX3
can substitute for SRY if it is misexpressed in the right tissue.
So, too, can it when expressed in the genital ridge in XX mice
transgenic for SOX3.

This suggests that SRY arose by a simple rearrangement
that truncated SOX3 and substituted a promotor that drove its
expression into the genital ridge. A similar thing has happened
in several fish, in which change of the tissue – or the timing or
the amount – of an autosomal gene that upstaged the reigning
sex-determining gene (Graves 2013; Kikuchi and Hamaguchi
2013).

Kangaroos and Y chromosome degradation

It turns out that SRY is typical of genes on the Y chromosome
in humans and other mammals, most of which have partners
on the X from which they obviously evolved. Kangaroos were
crucial to these discoveries.

Studies in the tammar wallaby identified X-borne partners,
not only to SRY, but also to other genes on the Y chromosome
(Fig. 3a). For instance, a geneRBMYon the humanYwas thought
to be a critical spermatogenesis gene lying in an interval,
deletion of which caused azoospermia. It had been classed
by Page as a ‘Type II’ Y gene that was unique to males (in
contradistinction from Type I genes that had copies on the X:
Lahn and Page 1997). However, our attempts to clone its
homologue from the tammar wallaby and the dunnart revealed
a homologue on the marsupial X chromosome, and we soon
found that the human X, too, contained a copy of this RBMX
gene. This gene, expressed in brain and germ cells, is highly
conserved throughout vertebrates and critical for brain
development in zebrafish (Tsend-Ayush et al. 2005). It is clearly
the ancestor of RBMY. So too is a gene TSPX on the X the
ancestor for the gonadoblastoma gene TSPY on the Y
(Delbridge et al. 2004).

It turns out that most (20 of the 27) of the unique protein-
coding genes on the human Y have copies on the X from which
they clearly diverged. Some genes on the Y keep their original
function, suggesting that they are dosage sensitive (Bellott
et al. 2014). Others have adopted male-specific functions.

This implies that the human Y chromosome is essentially a
degraded X, and genes on the Y are mostly degraded copies
of genes on the X that have been selected for a male-specific
function, usually in spermatogenesis (Delbridge et al. 1999;
Delbridge et al. 2004). There is no distinction between Class I
and II genes, since many of the male-specific genes have
homologues on the X. This finding is consistent with the
hypothesis that the Y chromosome is essentially a degraded X
(Graves 2006).

The Y chromosome of marsupials is very tiny, sometimes
just a dot under the microscope. This is not surprising because it
is derived from the smaller X of ancient mammals which did
not include the added region. Surprisingly, however, it retains
several genes, some shared with the human Y, others unique
to marsupials (Fig. 3b).

The first unique marsupial Y gene was discovered in the
attempt to isolate the marsupial version of a sex-reversing gene
on the human X, ATRX. Surprisingly, sequences from human
ATRX detected, as well as an ATRX orthologue on the marsupial
X, a sequence on the tammar wallaby Y we called ATRY (Pask
et al. 2000). A strategy of screening genes with DNA from
physically isolated tammar wallaby Y chromosomes netted 11
more (Murtagh et al. 2012). Four of these (including SRY and
RBMY) are shared with the human XY. The others are not
present on the Y chromosome in eutherians. But all have copies
on the X chromosome in tammar wallabies, as well as in
humans.

The mammal Y chromosome has therefore degraded very
rapidly since it was initiated 166–190million years ago. Since
divergence 166 million years ago, degradation has occurred
independently in marsupials and eutherians, so that the gene
content of their Y chromosomes is different.

Degradation of the Y in rodents has proceeded to the state
that it contains only two genes that are required to produce
fertile males (Yamauchi et al. 2016); even these can be easily
substituted. There are many rodent species with variant sex
chromosomes and modes of sex determination, including
inactive SRY alleles in XY* females, suppressor loci on the X
that produce XY* females, translocations and rearrangements
that might add novel sex determining genes. Two rodent
lineages have completely lost the Y chromosome.

I have suggested that the rodent Y chromosome has
degraded to a point at which the sex-determining system is
no longer stable, providing a selective advantage to novel
systems. The same fate may eventually overtake the human
Y chromosome, promoting similar experiments in sex
chromosome evolution. It has recently been proposed that this
type of sex chromosome turnover is associated with the major
mammal divergences (Fig. 5) and may have promoted mammal
speciation (Graves 2016).

Conclusions – the value of ‘independent experiments
in mammal evolution’

The discovery of SRY was historically important. It was
an early demonstration of the power of positional cloning,
which has since unlocked the secrets of many human genetic
diseases. SRY is an important gene that regulates the switch
of a complex network of genes that control the direction of
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differentiation of the undifferentiated gonad into either a testis
or an ovary.

Like most of mammal genetics, the focus of discovery in this
field has been on humans and mice. There is no doubt that these
species provide excellent models; humans because we cherish,
diagnose and treat our mutants, and mice because their genomes
are so manipulable. Sensible scientists work on these two species
because they are given the lion’s share of funding (even in
Australia).

However, Australian mammals offer special insights because
they are so distantly related to humans and mice. Marsupials
have been evolving independently from eutherians for
166million years, and monotremes for 190million years. In
this time, many fundamental differences, even in the most basic
functions, like sex, are likely to have evolved (Fig. 5) (Luo et al.
2011).

It was the ‘marsupial test’ that disqualified ZFY from a
role in sex determination because it was autosomal in tammar
wallabies and dunnarts, and the same species that offered
confirmation of the role of SRY. It was the same two species
that provided the first glimpse of an X-borne partner of SRY
that was the key to discovering how this critical gene evolved.
And the X-borne partners of other human Y genes that led to
the theory that the human Y is a degenerate X, and Y genes
evolved from X genes. It was the platypus, with its bizarre
bird-like sex chromosomes, that provided a (surprisingly

recent) time-zero point for the evolution of SRY and the therian
XY pair.

SRY is important also in evolutionary history. Its birth
190–166million years ago defined themammalXYchromosome
pair, and its eventual death may lead to the evolution of novel
systems. SRY is a paradigm of genes isolated on the Y
chromosome, which diverge and take on male-specific roles.
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