Nitrate supplementation has marginal effects on enteric methane production from *Bos indicus* steers fed Flinders grass (*Iseilema* spp.) hay, but elevates blood methaemoglobin concentrations

N. Tomkins^{A,E,F}, *A. J. Parker*^B, *G. Hepworth*^C and *M. J. Callaghan*^D

^ACSIRO Agriculture, Australian Tropical Science and Innovation Precinct, James Cook University, Townsville, Qld 4811, Australia.

^BCollege of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Qld 4811, Australia.

^CStatistical Consulting Centre, The University of Melbourne, Vic. 3010, Australia.

^DRidley AgriProducts Pty Ltd, Toowong, Brisbane, Qld 4066, Australia.

^EPresent address: Meat & Livestock Australia, 527 Gregory Terrace, Spring Hill, Qld 4006, Australia.

^FCorresponding author. Email: ntomkins@mla.com.au
Fig. S1. Mean total volatile fatty acid concentration (—) and molar proportions of acetate (○) and propionate (——) for two steers consuming Flinders grass hay over 24 h period post feeding: 0 (Control; Δ) or 15 g N supplement containing urea (▲), 30 g (CaN1; ●) or 50 g (CaN2; ○) nitrate daily.
Fig. S2. Mean rumen NH3-N concentrations for two steers consuming Flinders grass hay over 24 h period post feeding: 0 (Control; ∆) or 15 g N supplement containing urea (▲), 30 g (CaN1; ●) or 50 g (CaN2; ○) nitrate daily.