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Abstract. Genomic information has the potential to change the way beef cattle and sheep are selected and to substantially
increase genetic gains. Ideally, genomic data will be used in combination with pedigree and phenotypic data to increase the
accuracyof estimatedbreedingvalues (EBVs) and selection indexes.Thefirst example of this inAustraliawas the integration
of four markers for tenderness into beef cattle breeding values. Subsequently, the availability of high-density single
nucleotide polymorphism (SNP) panels has made selection using genomic information possible, while at the same time
creating significant challenges for genetic evaluation with regard to both data management and statistical modelling.
Reference populations have been established in both the beef cattle and sheep industries, in which an extensive range of
phenotypes have been collected and animals genotyped mainly using 50K SNP panels. From this information, genomic
predictions of breeding value have been developed, albeit with varying levels of accuracy. These predictions have been
incorporated into routinegenetic evaluationsusing three approaches and trial results arenowavailable tobreeders. In thefirst,
genomic predictions have been included in genetic evaluation models as additional traits. The challenges with this method
have been the construction of consistent genetic covariance matrices, and a significant increase in computing time. The
second approach has been to use a selection index procedure to blend genomic predictions with existing EBVs. This method
has been shown to produce very similar results, and has the advantage of being simple to implement and fast to operate,
although consistent genetic covariancematrices are still required. Third, in sheep a single-step analysis combining a genomic
relationship matrix with a standard pedigree-based relationship matrix has been used to estimate breeding values for carcass
and eating-quality traits. It is likely that this procedure or one similar will be incorporated into routine evaluations in the near
future. While significant progress has been made in implementing methods of integrating genomic information in both beef
and sheep evaluations in Australia, the major challenges for the future will be to continue to collect the phenotypes needed
to derive accurate genomic predictions, and in managing much larger volumes of genomic data as the number of animals
genotyped and the density of markers increase.
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Introduction

Selection in the Australian beef cattle and sheep breeding sectors
is often based on selection indexes for overall economic merit,
and although significant genetic progress in mean index values
has been reported by Barwick and Henzell (2005) in cattle and
Swan et al. (2009) in sheep, increasing the rate of progress is
essential for both industries to increase productivity and improve
their competitive advantage. Genomic information offers the
possibility of increasing the rate of progress by increasing
selection accuracy at an earlier age (e.g. Sise and Amer 2009;
Van Der Werf 2009; Van Eenennaam et al. 2011) and in the
context of selection for economic merit, the potential impact of

genomic information is greatest for breeding objective traits that
are difficult or costly tomeasure. In the present paper,we describe
how genomic information is currently being used in Australian
beef cattle and sheep genetic evaluation systems to increase the
accuracy of EBVs and selection indexes.

Genetic evaluation systems for beef cattle
and sheep in Australia

Large industry wide genetic evaluations have been in place since
the 1980s for beef cattle through BREEDPLAN (Graser et al.
2005) and since the 1990s for sheep through LAMBPLAN and
MERINOSELECT (Brown et al. 2007). In beef cattle, separate
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evaluations are organised within a large number of breeds by
breed societies using their databases that are maintained by the
Agricultural Business Research Institute (ABRI) and use the
BREEDPLAN evaluation software licenced to ABRI. Included
are several temperate breeds that often combine data from
Australian and New Zealand herds, and the tropically adapted
breeds typically used in the north of Australia. These databases
grow at a rate exceeding 130 000 calves per year from Australian
herds.

The traits most commonly measured are early growth and
live-animal ultrasound scanning of carcass traits. The traits
influencing economic merit that will benefit most from
genomic information are carcass traits, feed efficiency and
female reproduction. The latter is particularly important in the
Bos indicus-dominant Northern beef herd.

Sheep evaluations are run by Sheep Genetics, a business
unit of Meat and Livestock Australia that maintains databases
supporting two delivery systems, namely MERINOSELECT
for Merino sheep and LAMBPLAN for terminal and maternal
sire breeds. These are large systems, growing at a rate of
75 000–95 000 new animals per year for Merinos, 90 000–
110 000 for terminal sire breeds and 40 000–45 000 for
maternal sire breeds. The analyses are conducted by Animal
Genetics and Breeding Unit using the OVIS evaluation software
(Brown et al. 2007).

The terminal sire evaluation is across breed, with the
dominant breeds being Poll Dorset, White Suffolk, Suffolk
and Texel. Maternal sire evaluations are currently conducted
separately but are moving to an across-breed system in which
the dominant breeds will be Border Leicester and Coopworth.
All of these populations can be consideredmulti-breed to varying
degrees,with significant levels of crossbreeding identifiable. This
has implications for genomic evaluation.

The traits most commonly measured in sheep include
bodyweight and ultrasound scanning of muscle and fat on live
animals (all breeds), and wool weight and quality (Merinos).
These traits are recorded on young animals before selection age
and therefore have breeding values of moderate to high accuracy.
Genomic information will have little impact on these traits. There
are several hard-to-measure traits where current accuracies of
breeding values are low (and in some cases zero), including adult
wool production, parasite resistance, reproduction, and carcass
and eating-quality traits. Increasing the accuracies of these traits
byusing genomic information iswhere the largest gains in genetic
progress can be made.

The development of genomic resources

Tests for individual gene markers for both disease and
production traits have been commercially available in both
industries for over a decade. Johnston and Graser (2010)
showed the limitations of such tests in beef cattle, with the
size and direction (phase) of effects needing to be established
in each target population.

The use of individual marker tests has largely been
superceded by the availability of high density SNP marker
panels for both cattle and sheep. Use of these SNP panels
makes genomic selection possible (Meuwissen et al. 2001), in
which estimation of individual marker and quantitative trait loci

(QTL) effects is not so important. SNP panels with 10K and then
50K markers have been used to genotype large numbers of
animals in Beef CRC resource herds (Bindon 2001; Johnston
et al. 2003), while a 50K panel has been used extensively in two
sheep-resource flocks, namely the Sheep Genomics Project flock
(Oddy et al. 2007) and the Sheep CRC Information Nucleus
(Fogarty et al. 2007). Of the order of 8000 cattle and 10 000
sheep have been genotyped in these reference populations, and
phenotypes have been recorded for a very wide range of traits,
including those that are difficult or costly to measure. While the
number of genotypes is increasing quite rapidly, collecting
phenotypes can take much longer, particularly for sex-limited
and later-age traits such as female reproduction and adult wool
production.

The reference populations have been used to develop genomic
predictions of genetic merit (genomic estimated breeding values,
or GEBV), and to determine the accuracy of these predictions
using data from validation populations comprising genotyped
animals fromoutside the reference (although theymay have close
pedigree relationships with the reference population). The Beef
CRC is generating validation populations, one of which includes
1450 BREEDPLAN sires across eight breeds, mostly genotyped
with the 50K panel, but with a subset genotyped with the
high-density 800K panel. In sheep, a validation population of
460 ramswith highly accurate EBVs has been genotyped, and the
correlation between GEBVs and EBVs for these sires has been
used as an estimate of accuracy of genomic prediction.While this
procedure can be used for traits that are in the genetic evaluation
system, most of the difficult-to-measure traits of interest do not
have EBVs and for these the accuracy of genomic prediction is
determinedby cross-validation, dividing the referencepopulation
into subsets to first develop the genomic prediction and then to
determine its accuracy. This limits the accuracies achievable
for these traits because fewer animals can be used to develop
the prediction.

Work on the Beef CRC data is ongoing, but in a validation of
commercially available GEBVs produced by Pfizer Animal
Genetics for Australian Angus bulls, accuracies for growth and
carcass traits were between 0.20 and 0.45, for calving ease
between 0.21 and 0.24, and for feed intake between 0.01 and
0.22 (Johnston et al. 2010). Sheep CRC research has shown
accuracies from0.15 to0.79 forwool traits inMerinos,withfleece
weight and fibre diameter having accuracies >0.70, and from
–0.07 to 0.57 for meat traits, depending on the breed (Daetwyler
et al. 2010). These results show that accuracies are approaching
levels that are promising for genomic selection in both species,
but mainly for traits that are easy to measure. Hard-to-measure
traits tend to have lower accuracies, through lack of phenotypes
and the need to split reference populations for cross-validation,
as discussed above. This situation will improve over time as the
number of phenotypes increases.

As described above, a diverse range of breeds is used in both
the beef cattle and sheep industries in Australia, so the ability to
predict GEBVs across breeds is important to maximise return on
investment. However, low accuracies have been observed when
predicting across breeds. The current hope is that higher-density
SNP panels will improve this situation, although it is not clear
that this will be the case. With the recent availability of an
800K panel for cattle, key animals can be genotyped at the
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higher density and existing 50K genotypes can be imputed with
high accuracy (Goddard and Hayes 2009). Higher-density
information, including full sequence data, will become more
common in both industries as it becomes less expensive.

One important difference between the two industries in
Australia is that in beef, SNP panel genotyping of seedstock
animals is being offered as a commercial product by private
companies, but this has not happened yet in sheep. So far, in
beef, the information has been returned to breeders as GEBVs,
trademarked for example as Pfizer Molecular Value Predictions
(MVPs), with the actual genotypes not available (at the time of
writing MVPs were available only for the Angus breed).
However, genotypes are available from research datasets such
as the Beef CRC. Genetic evaluation models need the capacity to
handle both types of data.

By contrast, in sheep, genotyping of seedstock animals has
been partially funded by public research and development
organisations that have also been responsible for the reference
and validation resources described above. In 2010–2011, a pilot
project was established in which breeders were invited to
submit DNA samples on young rams. The aim of the project
was to investigate the issues associated with running an efficient
processing pipeline, including on-farm sampling, DNA
extraction, genotyping, quality control, database storage and
genetic evaluation. A second and larger-scale project sampling
of more animals is planned for 2011–2012. In the early stages of
the use of genomic information, the real benefit of the approach
adopted by the sheep industry is that the complete SNPgenotypes
from all resources, reference, validation and pilot project have
been combined in a single database. This has been a major
advantage for the development of genetic evaluation methods.

While the volume of genomic information is rapidly
expanding in both of these industries, it is clear that even as
SNP genotyping density increases, there is an ongoing need for
reference populations to increase the number of phenotypes on
difficult to measure traits, and to cope with the likely decline in
accuracy of genomic predictions over generations (Habier et al.
2010).With theBeef andSheepCRCpopulations either no longer
extant or coming to the end of their funding, both industries are
exploring the possibility of establishing new information nucleus
resources to fulfil this role.

Genetic evaluation methodology

Genomic selection has the potential to increase the rate of
genetic gain by increasing the accuracy of EBVs at earlier
ages by combining genomic information with pedigree and
performance data in the genetic evaluation system. In the
Australian beef cattle and sheep industries, these evaluations
are large multi-trait animal-model BLUP systems (Graser et al.
2005; Brown et al. 2007). In this section we describe how
genomic information has been included in these systems,
either by merging GEBVs with other information during or
after analysis, or by including genomic information directly in
the analysis. These methods apply to the estimation of breeding
values and accuracies, and once the necessary procedures have
been implemented in evaluation models, they flow directly
through to selection indexes such that calculation of indexes is
unchanged.

Calculation of genomic predictions and their accuracies

For the first two methods, the preliminary step is to estimate
GEBVs and the accuracy with which they predict the true
breeding value (TBV). Several statistical models can be used
to develop the necessary prediction equations (e.g. Moser et al.
2009) and most give similar results. GEBVs for sheep have been
estimated using the so called ‘GBLUP’ method, in which a
genomic relationship matrix (VanRaden 2008) is used in place
of the usual pedigree-based relationship matrix in the BLUP
mixed model equations. These analyses included data from the
reference population, with GEBVs estimated for the animals of
interest, such as validation sires or young rams, via their genomic
relationships with the phenotyped reference animals (Daetwyler
et al. 2010). While initial work on estimating GEBVs from the
Beef CRC resources has commenced (e.g. Zhang et al. 2010)
and is ongoing, GEBVs for beef cattle have been estimated by
private companies as described above. Accuracies of GEBVs as
predictors of TBV have been calculated in independent data
sets, genotyping validation sires with high-accuracy EBVs.
The correlation between their GEBVs and EBVs can be used
as a measure of accuracy (Daetwyler et al. 2010).

Inclusion of GEBVs as additional traits

The first method tested was to add GEBVs to genetic evaluation
models as additional traits (direct inclusion of GEBVs). With
this method, modifications to the analysis software are minimal.
The challenge has been to extend covariance matrices to
accommodate the GEBV traits. Assuming heritabilities close
to one, small values are used for residual variances, and
residual covariances between traits are set to zero. In the
genetic covariance matrix, GEBV variances can be set to r2sa

2

where r is the accuracy of the GEBV as a predictor of TBV,
and sa

2 is the genetic variance of the target trait. Under this
assumption, the covariance between the GEBV and the target
trait is also r2sa

2, given that the accuracy is the correlation
between the GEBV and TBV. In practice, the covariances
between GEBVs and all other traits can be estimated from data
as described below.

The first application was the inclusion of a GEBV based on
four markers in an evaluation to estimate breeding values for
shear force of meat in Brahman cattle (Johnston et al. 2009). The
model included three traits, including phenotypes for shear force
and flight time, in addition to the GEBV. After establishing the
covariances between the GEBV and other traits, implementation
was straightforward.

A full-scale implementation of the approach was made in the
SheepGeneticsMerino and terminal sire genetic evaluationswith
~1.2 and 1.5 million animals, respectively, and 45 ‘phenotypic’
traits (i.e. the standardmeasured traits). In theMerino evaluation,
GEBVswere available for eight of these phenotypic traits, for 195
validation sires and 79 pilot project rams. Accuracies had been
estimated as simple correlations between GEBVs and EBVs of
validation sires but were re-estimated in a series of bivariate
REML analyses using GEBVs for validation sires as the first
trait and the sires’ progeny records for the target traits extracted
from the genetic evaluation databases as the second trait. Genetic
correlations estimated from these models tended to be lower
than the equivalent accuracies from the simple analysis. Genetic
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correlations between GEBV traits and all other phenotypic traits
were also estimated using this method, allowing construction of a
genetic covariancematrix for all traits. The sameprocesswasused
to develop a model for the terminal sire evaluation, with GEBVs
available for three traits on331validation sires and153pilot rams.

These models were run successfully, with the results in line
with expectation in terms of variances of the genomically
enhanced EBVs, correlations with original EBVs, and changes
in accuracy. However, time taken to solve the equation system
using the preconditioned conjugate gradient method (Tsuruta
et al. 2001) increased by 7–10 times. This meant that it was
impractical to use this approach in the routine evaluation system.

The same approach was used to include GEBVs (Pfizer
MVPs) in the full BREEDPLAN analysis for the Angus breed,
but it was possible to generate results only by including a single
GEBV at a time, because convergence was again very slow
using the standard preconditioned conjugate gradient equation
solver. Research to overcome this problem by modifying the
BREEDPLAN andOVIS solvers is required before this approach
can be implemented.

Post-analysis combining of GEBVs and EBVs

Given the current impracticality of including GEBVs directly in
the genetic evaluation in the current routinely used software
for beef and sheep, post-analysis combining or ‘blending’ as
described by Hayes et al. (2009) and Harris and Johnson (2010)
was tested as an alternative. This is a selection-index approach
which requires deregression of EBVs and GEBVs by their
accuracies. The formula used was

EBVb¼ð1�m2r2ÞðEBV�EBVÞþð1�a2Þm2ðGEBV�GEBVÞ
ð1�m2r2a2Þ

þEBV;

whereEBVb is the blendedEBV, r is the accuracy of theGEBVas
a predictor of TBVas defined above,a is the accuracy of theEBV,
m2 is the heritability of the GEBV, and EBV and GEBV are the
means of EBVs and GEBVs for animals with GEBVs. The
accuracy of the EBVb is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
ð1� a2Þð1� m2r2Þ

ð1� m2r2a2Þ

s

:

The relationship between the accuracy of blended breeding
values and the accuracy of initial EBVs is shown in Fig. 1,
demonstrating that the genomic information contributes more
when the accuracy of EBVs is low.

Blendingwas implemented in sheep as a single-trait procedure
combining EBVswith GEBVs for each target trait separately, for
animalswithGEBVs.Accuracies of EBVs for individual animals
were taken from the routine run, while a single overall figure for
accuracy of GEBVs was used for each trait (rather than using
accuracies of GEBVs calculated for individual animals).
Estimation of this accuracy was as described above. There was
a close agreement between the EBVs and accuracies obtained
from the blending and direct-inclusion approaches, with
correlations between EBVs >0.94. Given this finding, it was
decided to use blending to generate results in the pilot project, and
these blendedEBVshavebeendelivered to thebreeders involved.

A summary of the variation observed and accuracies for Merino
rams from the pilot project is shown in Table 1.While an increase
in accuracy is evident, this set of rams already had moderate to
high accuracies, even without genomic information. Results for
terminal sires are shown in Table 2. There was no increase in
accuracy for bodyweight traits and a small increase in accuracy
for eye muscle and fat depth, because of the low accuracies of
GEBVs for terminal sire breeds.

This form of blending has also been implemented in beef
for the Angus BREEDPLAN analysis, blending GEBVs (Pfizer
MVPs) with BREEDPLAN EBVs only for animals with MVPs.
As with sheep, blending is conducted for each trait separately,
although traits without GEBVs can be blended with GEBVs for
highly correlated traits. Examples of this are mature cow weight,
where the EBV is blended with GEBVs for birthweight, weaning
weight and carcass weight, and carcass rump fat depth where the
EBV is blended with the GEBV for carcass rib fat depth. Results
are shown in Table 3. Again, the impact of genomic information
is limited because the animals tested had high initial accuracies
and the accuracies of GEBVs were low.

A trend evident in Tables 1–3 is that the standard deviation
of the blended EBVs is not always greater than the standard
deviation of the initial EBVs. This is to some extent, unexpected,
but could be because GEBVs have limited impact because of the
high initial accuracy of EBVs, as discussed above. This requires
further investigation once more data become available.

Single-step method

Ideally, all sources of information, pedigree, performance and
genomic should be combined in a single analysis. This would
accommodate animals with different levels of information; e.g.
some animals may only have genotype, while others may have
progeny-test records, and there are often pedigree links between
different classes of animals. A single-step method which uses all
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Fig. 1. Accuracy of blended estimated breeding values (EBVb) given initial
EBV accuracy, for genomic estimated breeding value (GEBV) accuracies of
0.2, 0.4 and 0.6.
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information has been developed by Misztal et al. (2009) and
Aguilar et al. (2010) and applied by Forni et al. (2011). The
method involves replacing the pedigree-based inverse-
relationship matrix used in the mixed-model equations with an
inverse matrix which is the same for ungenotyped animals,
but with the submatrix for genotyped animals replaced with
G–1 – A22

–1, where G is a genomic relationship matrix
(VanRaden 2008) for genotyped animals and A22 is the
pedigree-based relationship matrix for genotyped animals only.

The single-step method has been applied to six carcass and
eating-quality traits in sheep. These traits have not been part of the
routine genetic evaluations but have been recorded in the Sheep
CRC information nucleus and some other historical research
flocks which have used industry-recorded sires. The goal of
the analysis was to estimate breeding values for sires used in
the informationnucleus and the young rams from thepilot project,
such that they could be compared. The number of phenotypes
ranged from 3500 to 6700, with 45–74% of these animals

Table 1. Standard deviations and accuracies of estimated breeding values (EBV), genomic estimated breeding values (GEBV)
and blended breeding values (EBVb) for young Merino rams (n = 79)

Trait Standard deviation Accuracy
EBV GEBV EBVb EBV GEBV EBVb

Birthweight (kg) 0.17 0.11 0.22 0.52 0.35 0.59
Weaning weight (kg) 1.89 0.93 1.97 0.72 0.47 0.76
Post-weaning weight (kg) 2.72 1.52 2.85 0.72 0.58 0.79
Post-weaning eye muscle depth (mm) 0.73 0.47 0.82 0.56 0.50 0.67
Post-weaning fat depth (mm) 0.45 0.11 0.42 0.49 0.46 0.62
Yearling greasy fleece weight (kg) 10.29 6.17 10.10 0.72 0.72 0.83
Yearling fibre diameter (micron) 1.14 0.66 1.07 0.81 0.73 0.87
Yearling fibre diameter coefficient

of variation (%)
0.87 0.67 0.98 0.72 0.49 0.77

Yearling staple length (mm) 6.41 3.03 6.84 0.68 0.52 0.75
Yearling staple strength (NKt) 2.74 1.03 2.69 0.63 0.21 0.65

Table 2. Standard deviations and accuracies of estimated breeding values (EBV), genomic estimated breeding values (GEBV)
and blended breeding values (EBVb) for young terminal sire rams (n = 153)

Trait Standard deviation Accuracy
EBV GEBV EBVb EBV GEBV EBVb

Birthweight (kg) 0.21 0.03 0.21 0.67 0.11 0.67
Weaning weight (kg) 2.00 0.34 2.03 0.71 0.15 0.72
Post-weaning weight (kg) 3.17 0.35 3.25 0.71 0.12 0.71
Post-weaning eye muscle depth (mm) 0.84 0.48 0.84 0.70 0.43 0.74
Post-weaning fat depth (mm) 0.44 0.11 0.44 0.68 0.30 0.70

Table 3. Standard deviations and accuracies of estimated breeding values (EBV), genomic estimated breeding values (GEBV)
and blended breeding values (EBVb) for Angus cattle (n = 1176, March 2011 evaluation)

GEBV (standard deviation), Pfizer Molecular Value Predictions adjusted to the same scale as the EBVs

Trait Standard deviation Accuracy
EBV GEBV EBVb EBV GEBV EBVb

Birthweight (kg) 1.82 1.03 1.88 0.82 0.38 0.83
Weaning weight (kg) 10.30 4.35 10.40 0.77 0.38 0.79
Carcass weight (kg) 15.50 6.47 15.90 0.72 0.36 0.74
Carcass rib fat depth (mm) 1.20 0.80 1.27 0.68 0.42 0.72
Carcass eye muscle area (cm2) 2.54 1.60 2.93 0.65 0.37 0.69
Carcass intramuscular fat (%) 0.81 0.31 0.90 0.63 0.20 0.64
Weaning weight maternal (kg) 4.43 3.40 5.28 0.64 0.40 0.69
Yearling weight (kg) 18.0 A 17.9 0.77 A 0.78
18 month weight (kg) 22.7 A 22.6 0.77 A 0.77
Mature cow weight (kg) 24.9 A 24.8 0.70 A 0.70
Carcass rump fat depth (mm) 1.34 B 1.37 0.69 B 0.69

ACorrelated with birth, weaning and carcass weights.
BCorrelated with carcass rib fat.
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genotyped. EBVs and accuracies for the sires were similar
to those from an analysis using the standard model based on
pedigree and performance data only. The benefits of the single-
step method were apparent in the young rams which only have
genotypes (and varying levels of pedigree information). In these
animals, accuracies increased by 0.14–0.24, compared with
the standard model. However, these accuracies were higher
than corresponding accuracies derived from validation
analyses (H. D. Daetwyler, pers. comm.) and it is likely that
they were overestimated because of the multi-breed nature of
the data. This is an area requiring further research.

Implementation issues

The development of accurate genomic predictions requires
large numbers of animals. Although our reference populations
appear large (of the order of 10 000 for both cattle and sheep),
they are made up of numbers of subpopulations based on breed,
and in sheep, on cross-bred animals as well. Prediction equations
that work across breed can be developed only with data from
those breeds, and therefore, reference populations need to be
representative of the major breeds of interest, while at the same
time covering within breed diversity.

Furthermore, it is becoming apparent (Clark et al. 2011)
that the accuracy of genomic predictions varies with the
genetic distance of the predicted individual from the reference
population. Considerably greater understanding of the
relationship between genomic predictions and the TBVs is
required if we are to use the genomic predictions most
efficiently. Whatever the case, it is evident that reference
populations need to include animals representing all breeds of
interest for prediction, and that these animals are as highly related
as possible to the selection candidates in the wider population.

The development of genomic predictions requires separate
subpopulations for reference, validation and, to a certain extent,
genetic evaluation. This has been a challenge for the beef and
sheep industries in Australia. For example, commercially
available GEBVs in beef cattle have been developed using
genotypes from sires with high-accuracy BREEDPLAN EBVs.
In establishing the accuracy of these predictions, Johnston et al.
(2010) restricted validation analyses to data on grand progeny
because these would have less influence on the sires’ EBVs than
would progeny and own performance data. The drawbacks with
this approach are that the reference and validation populations are
often not strictly independent, and that there can be little data
available for validation, especially for hard-to-measure traits. It is
sometimes possible to exclude the phenotypes from the reference
population when estimating EBVs for validation purposes,
but obtaining sufficient data for accurate predictions remains a
challenge.

In sheep the Information Nucleus, flock has been used to
develop genomic predictions, but is also included in the routine
genetic evaluations because one of the aims of the flock was
to provide progeny test information on the sires used. Therefore,
with the direct inclusion and blending of the methods, the
reference data are included twice, first, in the form of
phenotypic records, and second, through GEBVs.

The single-step method avoids this double counting issue,
because genomic information is included directly in the model,

without the need to establish accuracy. As shown by Aguilar
et al. (2010), the method can be applied to large datasets with
millions of animals phenotyped and tens of thousands of
animals genotyped. It is likely, that a method of this type will
be implemented in Australian beef cattle and sheep genetic
evaluations in the near future. However, a full implementation
in beef will require the genotypes of commercially tested animals
to be made available.

A major practical challenge for including genomic
information in genetic evaluations is to develop scalable data-
management systems. Research and commercial interests are
generating increasing numbers of genotypes with increasing
density of SNPs, up to and including full sequence data. In
addition, it will be necessary to cater for the situation where
the genomic information consists of third-party GEBVs,
potentially with multiple GEBVs for the same trait. Genetic
covariance matrices need to be extended to include these
GEBVs, and the challenge of performing these validation
analyses should not be underestimated.

Conclusions

Genomic information is becoming available on an increasing
number of young animals and has been succesfully incorporated
into Australian beef cattle and sheep genetic evaluations, with
breeders receiving the first genomically enhanced trial EBVs in
late 2010. These enhanced EBVs are being produced using a
blending approach,which has been shown to give reliable results.
In the longer term, a single-step method will be implemented to
include genotypes directly in the evaluationmodelwhere they are
available, with third-party GEBVs included as additional traits
where they are not.

There is an ongoing need in both industries to continue
investment to maintain reference and validation populations
that have a wide range of relevant phenotypic traits recorded
to develop the accurate genomic predictions required to underpin
genomic selection.
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