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Abstract. In this study the objective was to estimate the genetic and genomic relationship between methane-related traits
and milk fatty acid profiles. This was done using two different estimation procedures: a single nucleotide polymorphism-
based genomic relationship matrix and a classical pedigree-based relationship matrix. Data was generated on three Danish
Holstein herds and a total of 339 cows were available for the study. Methane phenotypes were generated in milking robots
during milking over a weekly period and the milk phenotypes were quantified from milk from one milking. Genetic and
genomic parameters were estimated using amixed linearmodel. Results showed that heritability estimates were comparable
betweenmodels, but the standard error was lower for genomic heritabilities compared with genetic heritabilities. Genetic as
well as genomic correlations were highly variable and had high standard errors, reflecting a similar pattern as for the
heritability estimates with lower standard errors for the genomic correlations compared with the pedigree-based genetic
correlations. Many of the correlations though had amagnitude that makes further studies on larger datasets worthwhile. The
results indicate that genotypes are highly valuable in studies where limited number of phenotypes can be recorded. Also it
shows that there is some significant genetic association betweenmethane in the breath of the cowandmilk fatty acids profiles.
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Introduction

Methane (CH4) is a potent greenhouse gas that is ~25 as active
as carbon dioxide. Dairy cows emit CH4 while digesting and
their contribution to the worldwide emission of greenhouse gas
is substantial. Several mitigation strategies have been suggested:
feeding, vaccination, management but also genetic selection
(Cottle et al. 2011). In order to select for a given trait, the trait
must show genetic or genomic variability and a substantial
amount of data from individual cows are needed.

Several studies have worked on developing methods for
large-scale phenotyping of individual CH4 measurements
(Garnsworthy et al. 2012; Lassen et al. 2012). These methods
focus on CH4 recordings while cows are being milked in
automatic milking systems. However, even with this effort, it
will still be very time consuming and difficult to make direct
individual CH4measurements on all cows or themajority of cows
in a population to make genetic selection possible. Therefore,
indicators are needed, if CH4 emission from dairy cattle should
be decreased. It has been shown that feed intake can be used
to predict CH4 emission (de Haas et al. 2011). It is even harder
to imagine that feed intake data rather than CH4 data should be
available on the majority of the cows in a population.

A stoichiometric relationship between CH4 and ruminal
acetate, propionate, and butyrate was proposed by Demeyer
and Van Nevel (1975). These volatile fatty acids, which are
primarily formed in the rumen act as precursors for the
de novo synthesis of milk fatty acids in the mammary tissue.
Thus, milk fatty acid data has been used to predict CH4 emission
in several studies (Dijkstra et al. 2011; Dehareng et al. 2012).
Additionally, if one would like to implement CH4 in the breeding
goal it is important to know the correlation to other traits. Kandel
et al. (2013) showed positive genetic correlations between milk
mid-infrared spectre (MIR) CH4 in g/day and energy-corrected
milk (ECM), fat yield, and protein yield (Kandel et al. 2013). This
means that a decrease of CH4 should have negative impacts on
milk, fat and protein yields.Due to the relative small datasetswith
CH4 measures standard errors are usually high. Recently it was
shown that single nucleotide polymorphism (SNP) information
can be used to estimate the heritability in small datasets of ~400
animals (Krag et al. 2013a, 2013b).

This methodology has successfully been applied to fatty acid
concentrations in milk fat with moderate estimates of heritability
ranging from 0.10 for C18:1 trans-11 to 0.34 for C8:0 and C10:0
(Krag et al. 2013b). They showed that the SNP markers capture
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the population structure well and that SNPmarkers could be used
as an alternative to traditional pedigree-basedmethods.Use of the
genomic relationship matrix will decrease the standard error of
the estimates as the true genetic relationship between animals is
utilised in a betterway thanwhen a traditional pedigree is applied.

The aim of this study was to estimate the genetic and genomic
heritability for CH4-related traits and fatty acid concentrations in
milk fat as well as to estimate the genetic and genomic correlation
between CH4-related traits and fatty acids in milk. This is done
on a limited dataset but can give an indication of how milk fatty
acids and CH4 emission relates genetically in dairy cattle.

Materials and methods

Data were generated on three commercial farms in Denmark. A
total of 339 Holstein cows were available for this study. Several
phenotypeswere generated or extracted for the analysis (Table 1).
Methane measuring equipment was installed in milking robots
using a portable Fourier transformed infrared spectre measuring
device making a registration of CH4 and carbon dioxide every 5 s
(Lassen et al. 2012). This data was merged with traffic data from
each milking robot so that each cow got a phenotype for each
visit in the robot. The equipment was installed in each milking
robot for 7 days. From each visit, bodyweight and milk yield
were also recorded by the milking robot. From these records
a weekly mean of bodyweight and milk production was
calculated. This information was used to estimate daily CH4

production in grams per day (Madsen et al. 2010). Methane in
g/day (CH4_GRAMS) is calculated based on heat-producing

units (HPU), which is equal to (5.6*liveweight0.75 + 22*FPCM+
1.6*10�5*days carried calf). For each HPU a cow produces
180 g of carbon dioxide per h. CH4_GRAMSw is thereby
CH4_RATIO*180*24*HPU. Also CH4 per kg of ECM
(CH4_MILK) and the ratio between CH4 and carbon dioxide
CH4_RATIO were used as CH4-related traits. Overall fat and
protein percentages in milk were derived from the national
milk recording system based on the nearest milking record
from the week where CH4 measurements were taken. Also
milk samples were taken to measure milk fatty acid content in
the milk. This was done by gas chromatography, essentially as
described by Larsen et al. (2013).

The pedigree file contained 8049 animals and was traced back
as far as possible in the national cattle database.

Genotyping
In total 339 DH cows were genotyped with the BovineSNP50
beadchip (http://www.illumina.com/Documents/products/data
sheets/datasheet_bovine_snp5O.pdf, verified 18 November
2015). Genomic DNA was extracted from ear tissue. The
platform used was an Illumina Infinium II Multisample assay
device. SNP chips were scanned using iScan and analysed using
Beadstudio software version 3.1. The quality parameters used
for the selection of SNP in theGWASwereminimum call rates of
80% for individuals and 95% for loci. Marker loci with minor
allele frequencies (MAF)below1%were excluded.Thequalityof
the markers was assessed using the GenCall data analysis
software of Illumina. Individuals with average GenCall scores
below 0.65 were excluded following Teo et al. (2007). The SNP
positions were based on the Bos taurus genome assembly
(Btau_4.0) (Liu et al. 2009). In total 39 121 SNP markers were
used.

Calculation of the G-matrix
The calculation of the genomic relationship matrix has been
described in detail by Buitenhuis et al. (2011). For each
chromosome, a genomic relationship matrix as described by
the first method presented in VanRaden (2008) was calculated
as follows: Let M be a matrix with dimensions of the number
of individuals (n) by the number of loci (m) that specifies which
marker alleles each individual inherited. The elements of M
were set to –1, 0, 1 for the homozygote, heterozygote and the
other homozygote, respectively. The diagonals of M’M counts
the number of homozygous loci for each individual and off
diagonals measure the number of alleles shared by relatives.
Let the frequency of the second allele at locus i be pi, and let
P contain the allele frequencies, such that column i of P equals
2(pi – 0.5). Subtraction of P fromM gives Z, which is needed to
set the expected mean value to 0. The genomic relationship
matrix G was then calculated as ZZ0/[2

P
pi(1 – pi)]

(VanRaden 2008).

Statistical analyses
The data was analysed using equivalent models for the different
traits but with two different types of relationship structures. First
approach was a standard pedigree-based approach where the
inverse of the animal model A matrix is set up. In the second
approach a SNP-based genomic relationship matrix was set up.

Table 1. Overall mean, standard deviation (s.d.), minimum (min.) and
maximum (max.) values for the phenotypes used in the study

Values are in g/100 g fat

Mean s.d. Min. Max.

Energy-corrected milk 36.9 7.7 18.8 61.7
Weight 647.3 68.3 467 890
CH4_GRAMS 395 57.8 283 548
CH4_MILK 11.04 2.23 9.84 18.72
CH4_RATIO 0.072 0.01 0.054 0.11
C6:0 2.75 0.40 1.23 4.13
C8:0 1.44 0.27 0.34 2.40
C10:0 3.17 0.69 0.57 5.54
C12:0 3.68 0.89 0.74 6.21
C13:0 0.14 0.03 0.07 0.25
C14:0 11.58 1.95 4.06 15.32
C14:1 0.99 0.33 0.21 2.06
C15:0 1.10 0.24 0.50 1.87
C16:0 31.30 3.36 22.33 42.89
C16:1 1.78 0.49 0.90 4.12
C17:0 0.56 0.10 0.37 1.13
C18:0 9.53 1.99 5.99 17.70
C18:1cis9 20.31 3.97 13.19 34.70
C18:1trans11 1.34 0.29 0.83 2.21
C18:2n6cis 1.87 0.24 1.30 2.82
C18:3n3 0.53 0.087 0.31 0.85
CLAcis9, trans11 0.48 0.11 0.23 0.88
Fat (g/100 g milk) 3.93 0.79 1.92 7.03
Protein (g/100 g milk) 3.32 0.33 2.36 4.33
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The following linear animal model was used to infer genetic
parameters for CH4_GRAMS.

yij ¼ mþ herd þ monthþ robot * herd þ lactj þ b* dim

þ b*e�0:05* dimþai þ ei

Where yijklm is the dependent phenotype CH4_GRAMS, m is
the overall intercept, herdi is a fixed effect of the herd-id where
cows were measured, monthj is a fixed effect, robot*herd is the
robot by herd interaction, lactk is a fixed effect of the lactation
number at recording and dimL is the days in milk at recording.
Days in milk was modelled with a linear regression and an
exponential Wilmink term to take changes in early lactation
into account. This fits a lactation curve to the data (Wilmink
1987). The b’s are fixed regression coefficients. am is the random
animal effects and eijklm is the random residual effect.

The following linear animal model was used to infer genetic
parameters for CH4_MILK, ECM and weight.

yij ¼ mþ herd þ monthþ lactj þ b* dimþb*e�0:05* dim

þ ai þ ei

Where y is the dependent phenotype CH4_MILK, ECM or
weight, m is the overall intercept, herd is the herd-id where cows
weremeasured,month* year is themonth by year interaction, lact
is the lactation number at recording and dim is the days in milk
at recording. Days in milk was modelled with a linear regression
and a Wilmink term to take changes in early lactation into
account. The b’s are fixed regression coefficients; a’s are the
random animal effects and e is the random residual effect.

The random effects for all models are assumed to be
independently and normally distributed with means of zero.
G0 is a matrix containing the additive genetic variance. A is a
matrix with the additive genetic relationship of all animals. Pe0
is a matrix containing the permanent environmental variance
for CH4_RATIO and R0 is a matrix with the residual variance.
I is the identity matrix containing as many rows and columns as
there are records for each trait.
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Variance and covariance components are estimated using
the AI-REML procedure in DMU (Madsen and Jensen 2014).
Correlations were estimated using a bi-variate model between
CH4_RATIO, CH4_GRAMS, CH4_MILK, ECM, weight of
all milk fatty acids and standard errors were estimated using a
Taylor series approximation.

Results and discussion

Overall mean, standard deviation, minimum and maximum
values for all the traits analysed are presented in Table 1. The
milk data are generally in agreement with the values obtained
in another study on Danish Holstein (Krag et al. 2013b). The
average CH4 production was 395 g per day and the CH4

production in grams per kilo ECM was 11.04. This is in
agreement with other studies on large-scale CH4 recordings
in dairy cattle (Lassen et al. 2012). Genetic and genomic

heritabilities are shown in Table 2. For most milk fatty acids
heritability estimates were moderate to low (0.00–0.6). For the
three CH4 traits the heritability was ~0.2 ranging from 0.09 to
0.26.Heritabilities estimatedusingeither theSNP-basedgenomic
relationship matrix or the pedigree-based relationship matrix are
in agreement, but in most cases, standard error of the estimates
are lower for the SNP-based genomic relationship matrix (mean
standard error of 0.13) compared with the classical pedigree-
based relationship matrix (mean standard error of 0.14) though
not significant. Heritability estimates for C18 fatty acids are
comparable to estimates found in Krag et al. (2013a), whereas
the estimates for the de novo fatty acids are somewhat lower
and estimates for C14:1 and C16:1 and to some extent C15:0 and
C17:0 are higher. The difference in heritability estimates in the
study by Krag et al. (2013a) could be due to a more stringent
selection of cows, where daughter groups of limited size were
achieved,whereas in this study, all animalswere analysedwithout
any restrictions on relationship. However, data recording was
restricted to three farms, which means a small number of sires
were used. This means that the cows in the current dataset might
bemore related comparedwith the cows in theKrag et al. (2013a)
dataset.

High heritabilities for C14:1 and C16:1 suggest that the
desaturase activity underlying these fatty acids, to a large
extent, is genetically regulated, which might be related to
variation within the stearoyl-CoA desaturase 1 gene. However,
in both studies the fatty acid heritability estimates are hardly
significant due to relatively high standard errors. The differences
in heritabilities for C14:1 and C16:1 between the pedigree-based
and the SNP-based analysis is though probably largely due to
randomness. In another study of 1800 Dutch Holstein cows
intra-herd heritabilities were estimated for 14 milk fatty acids

Table 2. Pedigree-based and genomic heritabilities with standard
errors

H2 pedigree H2 genomic

CH4_GRAMS 0.25 ± 0.16 0.24 ± 0.15
CH4_MILK 0.20 ± 0.16 0.26 ± 0.14
CH4_RATIO 0.16 ± 0.15 0.09 ± 0.11
C6:0 0.22 ± 0.15 0.12 ± 0.11
C8:0 0.17 ± 0.13 0.12 ± 0.11
C10:0 0.10 ± 0.11 0.09 ± 0.11
C12:0 0.11 ± 0.11 0.13 ± 0.12
C13:0 0.20 ± 0.16 0.19 ± 0.15
C14:0 0.16 ± 0.17 0.08 ± 0.10
C14:1 0.44 ± 0.18 0.60 ± 0.19
C15:0 0.36 ± 0.19 0.60 ± 0.21
C16:0 0.21 ± 0.13 0.17 ± 0.12
C16:1 0.20 ± 0.15 0.51 ± 0.19
C17:0 0.15 ± 0.13 0.23 ± 0.14
C18:0 0.11 ± 0. 12 0.17 ± 0.13
C18:1cis9 0.07 ± 0.10 0.02 ± 0.09
C18:1trans11 0.06 ± 0.11 0.10 ± 0.10
C18:2n6cis 0.15 ± 0.12 0.12 ± 0.11
C18:3n3 0.03 ± 0.11 0.00 ± 0.10
CLAcis 9, trans11 0.13 ± 0.12 0.18 ± 0.12
Fat (g/100 g milk) 0.19 ± 0.16 0.21 ± 0.14
Protein (g/100 g milk) 0.24 ± 0.14 0.22 ± 0.13
Mean s.e. 0.14 0.13
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and estimates were somewhat higher than in this study ranging
from 0.24 for C18:0 to 0.72 for C10:0 (Bouwman et al. 2011).
In a UK study of 2408 Holstein cows heritability estimates for
16 milk fatty acids ranged from 0.00 for C18:1, trans-11 to 0.28
for C14:1, cis-9 (Garnsworthy et al. 2010). The magnitude of
the heritabilities found in the present study seems to be closer to
those found by Garnsworthy et al. (2010) than those found by
Bouwman et al. (2011). This can be due to the relaxed selection
of animals based on the whole herd in the present study as well as
in the study by Garnsworthy et al. (2010).

Genetic and genomic correlations were highly variable
between methods and estimates are all over the parameter
space (Table 3). Also in some cases, there was problem with
obtaining convergence and thereby reasonable estimates. This
was especially true for some of the C18 fatty acids where
standard errors of the estimates sometimes were even higher
than 1. As for the heritability estimates, the standard errors
were higher for the pedigree-based estimates (mean standard
error of 0.56, 0.61 and 0.66 for correlations with CH4_GRAMS,
CH4_MILK and CH4_RATIO, respectively), compared with
estimates using the SNP-based genomic relationship matrix
(mean standard error of 0.44, 0.43 and 0.63 for correlations
with, CH4_GRAMS, CH4_MILK and CH4_RATIO,
respectively). The de novo fatty acids in particular seem to be
significantly negatively correlated CH4_MILK, when using
both methods, whereas C13:0, C15:0 and partly C17:0 had
significantly positive genomic correlations with all CH4 traits.
The uneven saturated fatty acids are generated by the microbiota
in the rumen and the content of these fatty acids in milk has
previously been associated with the molar proportion of
volatile fatty acids in the rumen (Vlaeminck et al. 2006). The
standard errors of the estimates shown in this study are
substantial, and it might not be possible to come to the same

results on another similar study in another population of animals.
SNP-based genomic relationship matrices to estimate heritability
were shown to provide smaller standard error on the estimates
compared with classical pedigree-based heritabilities. This is in
linewith the results ofKrag et al. (2013a), who showed that when
measures are hard or expensive to obtain reliable heritability
estimates can be obtain on datasets containing ~400 animals
with registrations and genotypes on traits with heritabilities
higher than 0.15. In this study, we are right on the border of
these thresholds for many of the traits and therefore also several
heritabilities are not significantly different from 0. This is
similarly the case for the genetic and the genomic correlations
between the CH4 traits and the milk component traits. There is
a positive effect on the standard error of the estimates to use a
SNP-based genomic relationship matrix rather than a classical
pedigree-based relationship matrix. But again the data collected
in this study is on the border of the data that is needed to provide
significant genetic or genomic correlations even though the
results show that the standard error decreases with use of DNA
information. Therefore, it can be beneficial to use the resources on
gettinggenotypes rather thangettingmore expensive phenotypes.

Using MIR to predict other phenotypes is indeed appealing.
The phenotypic and genetic variability of CH4 production
(g/day) and CH4 intensity (g/kg ECM) has been predicted by
MIR. However, such estimates based on predicted CH4 are
heavily smoothed and are based on traits that already have
high heritability, so they are expected to have high heritability
themselves. In 2013, Kandel et al. estimated genetic parameters
of MIR predicted CH4 traits by using single trait random
regressions test-day models from 679 444 test-day records
collected from Holstein cows in their first three lactations. The
calculated heritability values were ~0.10 for CH4 in g/day (0.12,
0.10 and 0.09 for the 1st, 2nd, and 3rd parity, respectively). The

Table 3. Pedigree-based and genomic correlations with standard errors
NC, model did not converge

Correlations pedigree Correlations genomic
CH4_GRAMS CH4_MILK CH4_RATIO CH4_GRAMS CH4_MILK CH4_RATIO

C6 –0.10 ± 0.49 –0.65 ± 0.49 –0.24 ± 0.59 –0.48 ± 0.55 –0.71 ± 0.45 –0.46 ± 0.68
C8 –0.09 ± 0.53 –0.80 ± 0.57 –0.08 ± 0.65 –0.06 ± 0.56 –0.60 ± 0.51 0.18 ± 0.74
C10 –0.10 ± 0.64 –0.82 ± 0.68 –0.18 ± 0.80 0.01 ± 0.61 –0.51 ± 0.59 0.38 ± 0.78
C12 0.066 ± 0.63 –0.63 ± 0.69 –0.06 ± 0.75 0.24 ± 0.49 –0.17 ± 0.51 0.58 ± 0.63
C13 –0.77 ± 0.37 –0.66 ± 0.98 0.56 ± 0.76 0.64 ± 0.49 0.57 ± 0.42 1.00 ± 0.68
C14 0.51 ± 0.81 0.09 ± 0.62 –0.39 ± 0.65 0.35 ± 0.54 0.13 ± 0.59 0.53 ± 0.71
C14_1 –0.09 ± 0.43 0.37 ± 0.42 0.38 ± 0.28 0.11 ± 0.28 0.29 ± 0.40
C15 –0.37 ± 0.37 0.40 ± 0.57 NC 0.87 ± 0.30 0.50 ± 0.29 1.00 ± 0.37
C16 –0.13 ± 0.48 –0.05 ± 0.53 0.04 ± 0.57 –0.25 ± 0.49 0.23 ± 0.45 –0.14 ± 0.64
C16_1 NC NC – 0.28 ± 0.36 0.11 ± 0.30 0.57 ± 0.60
C17 0.18 ± 0.54 0.39 ± 0.54 0.89 ± 0.64 0.62 ± 0.50 0.28 ± 0.36 1.00 ± 0.71
C18 –0.74 ± 0.65 0.18 ± 0.61 –0.02 ± 0.68 –0.25 ± 0.46 –0.06 ± 0.45 0.07 ± 0.69
C18:1cis9 0.25 ± 0.70 0.58 ± 0.79 0.06 ± 0.88 0.70 ± 2.44 –1.00 ± 1.95 0.11 ± 1.59
C18:1trans11 –0.87 ± 0.76 –0.70 ± 0.76 –0.71 ± 0.77 0.10 ± 0.61 0.03 ± 0.52 –0.27 ± 0.76
C18:2n6cis 0.42 ± 0.51 0.33 ± 0.66 0.43 ± 0.65 0.76 ± 0.45 0.22 ± 0.48 0.48 ± 0.62
C18:3n3 NC NC NC 1.00 ± 1.16 1.00 ± 1.97 1.00 ± 1.50
CLAcis9, trans11 0.33 ± 0.60 –0.19 ± 0.58 –0.09 ± 0.64 0.53 ± 0.46 –0.07 ± 0.42 0.13 ± 0.62
Fat 0.37 ± 0.49 0.59 ± 0.51 0.39 ± 0.58 –0.15 ± 0.48 0.11 ± 0.40 0.49 ± 0.57
Protein 0.77 ± 0.35 0.78 ± 0.31 0.85 ± 0.48 0.39 ± 0.42 0.46 ± 0.32 1.00 ± 0.61
Mean s.e. 0.56 0.61 0.66 0.44 0.43 0.63
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heritability for CH4 intensity was slightly higher with values
~0.15 (0.18, 0.12, and 0.14 for cows in their first three parities).
These results suggest a relatively lowheritability ofCH4 emission
by dairy cows. Kandel et al. (2014) studied the consequences of
selection for environmental impact traits in dairy cows using
MIRdata to predict CH4 emission and setting up a selection index
that include MIR-based CH4 emission together with other traits
of economic importance. These authors used CH4 intensity
(g/kg of milk) and calculated approximate genetic correlations
from estimated breeding values. Negative approximate genetic
correlations were observed between CH4 intensity andmilk yield
(–0.67), fat yield (–0.13), protein yield (–0.46), longevity (–0.07),
and average of conformation traits (–0.23). Positive approximate
correlations were observed for fertility (0.31) and body condition
score (0.27) in the study by Kandel et al. (2013). Based on these
correlations and by putting a hypothetical 25% weight on CH4

intensity on the current Walloon genetic evaluation index and
proportional reduction on other selection traits, the response to
selection was a reduction of CH4 intensity by 24%, increase in
milk yield by 30%, fat yield by 17%, protein yield by 29%,
somatic cells score by–15%, longevity by24%, fertility by–11%,
body condition score by –13%, and conformation traits by 24%.
These results suggest that a decrease of CH4 intensity could have
a negative impact on the cow fertility but a positive effect on the
longevity but it needs to be tested on independent data as well as
on data where more CH4 observations are available.

Conclusion

Some milk fatty acids are genetically correlated with CH4

emission in dairy cattle. In this study it was mainly C13:0,
C15:0 and C17:0 that showed significant genetic and genomic
correlations with CH4 emission. Using a SNP-based genomic
relationshipmatrix rather thanpedigree-based relationshipmatrix
provided estimates with lower standard errors. In small studies
with limited sample size it is important to use animals that are
genotyped to get more reliable estimates.
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