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Abstract. Measurement of liveweight of stock is one of the most important production tools available to farmers –
playing a role in nutrition, fertility management, health and marketing. Yet most farmers in sub-Saharan Africa do not
have access to scales on which to weigh cattle. Heart girth measurements (and accompanying algorithms) have been used
as a convenient and cost-effective alternative to scales, however despite a plethora of studies in the extant literature,
the accuracy and sensitivity of such measures are not well described. Using three datasets from phenotypically and
geographically diverse cattle populations, we developed and validated new algorithms with similar R2 to extant studies
but lower errors of prediction over a full range of observed weights, than simple linear regression, that was valid for
measurements in an unassociated animal population in sub-Saharan Africa. Our results further show that heart girth
measurements are not sufficiently sensitive to accurately assess seasonal liveweight fluctuations in cattle and thus
should not be relied on in situations where high precision is a critical consideration.
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Introduction

Measurement of liveweight (LW) and LW change is ubiquitous
to most aspects of ruminant livestock husbandry and
management. In advanced agricultural systems, assessment of
LW is indispensable in measuring growth, estimating intake and
nutritional requirements of stock and determining their readiness
for market or for joining (Sawyer et al. 1991). Measurement of
LW is also requisite in the determination of more complex
factors such as food conversion efficiency and residual feed
intake, which are gaining importance in advanced livestock
production systems (e.g. Veerkamp 1998).

On a simpler, but equally important level, knowledge of LW
is essential for safe and efficacious administration of veterinary
medications and for farmers to receive an equitable price in the
sale of animals. Calibrated weighing scales are considered the
gold standard for determining LW, but these are rarely available
to smallholder farmers in sub-Saharan Africa (SSA). Often, the
only recourse that farmers have is to estimate the LW of their
animals visually, but Machila et al. (2008) has demonstrated
that farmers are poor judges of their animals’LWand further, that
some commercially produced ‘weigh bands’ (e.g. CEVA Santé
Animale) consistently overestimate LW of smallholder cattle,
suggesting that the algorithm on which the graduations of the
weigh band are based are not valid to use in such populations.
Irrespectiveof this, heart girth circumferencemeasurements (HG)

have been consistently demonstrated across many studies to have
a strong, although variable, correlation with LW (Table 1).
This variability may be due to phenotypic differences between
populations, but is rarely explored (e.g. Buvanendran et al.
(1980)) and there has been apparently little interest in developing
a more universally applicable algorithm for Zebu · cattle
in SSA. Several studies have considered other allometric
measurements (e.g. wither height, body length, body condition
score), but such additional measurements have not greatly
improved the relationship of LW to HG (Buvanendran et al.
1980; Bozkurt 2006; Bagui andValdez 2009). ThusHG has been
repeatedly demonstrated to be the most useful and robust proxy
for the use of scales in the LW estimation of cattle.

Studies that explored quadratic and exponential relationships
betweenHG and LW (Buvanendran et al. 1980; Nesamvuni et al.
2000; Francis et al. 2004), have not improved coefficients of
regression by more than a few percentage points, while having
added unneeded complexity to the model. Perhaps because the
simplest relationship appears (based on R2) to be as strong as
the more complex equations, the relationship between HG and
LW has generally been described by simple linear regression
(Table 1).

Using the coefficient of determination of a regression as the
criterion for goodness-of-fit does not provide information about
variance or bias in the model, and hence the degree to which
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the values predicted by the model will vary from true values.
The magnitude of the prediction error (PE) will critically affect
the utility of using HG measurements to estimate LW. Although
PE of 20% may be acceptable for setting dosage rates for
veterinary chemicals (Leach and Roberts 1981), errors of 10%
or greater are problematic when using HG measurements to
assess production-related traits in individual animals that
require accurate LW determination. Lesosky et al. (2012),
taking a different approach – transforming the response
variable while using a simple linear regression, reported PE of
less than 20% with a co-efficient of determination of 0.98. This
study was based on a group of phenotypically similar indigenous
Zebu cattle of limited weight range (mostly <100 kg) and it is
unclear whether such a strong relationship would be observed
in a more phenotypically diverse population.

Therefore, our study had four objectives:
(i) To determine the strongest relationship possible between

HG and LW, by considering both PE and regression
coefficients, rather than regression coefficients alone;

(ii) To determine the extent to which disaggregation of data
into more phenotypically homogenous populations is
likely to strengthen the relationship between HG and LW;

(iii) To assess whether such an algorithm may be used
successfully to establish LW in novel populations; and

(iv) To determine the applications for which HGmeasurements
may validly be used as an alternative to weighing scales
for LW determination.

Materials and methods

Animal population for algorithm development
Two datasets, one each from West and East Africa were used to
develop and train the HG algorithm. The East African dataset
comprised smallholder (Zebu · Bos taurus) female crossbred
dairy cattle in Siongiroi (0�550S, 35�130E; ~1800 m above sea
level) andMeteitei (00�300N, 35�170E; ~2000 m above sea level)
districts of Rift Valley Province, and Kabras district in Western
Province (00�15010�N, 34�20035�E: ~1500 m above sea level;
(n = 439, LW: range: 36–618 kg, · = 264.9 kg, s.e.m. = 3.74 kg)
(Lukuyu et al. 2016). Data from cattle from West Africa were
collected between November 2013 and June 2015 on 84 farms
in theThiès andDiourbel regionsofSenegal, (n=621,LW: range:
31–604 kg; · = 262.7 kg, s.e.m. = 4.06 kg) with the different
breed/cross-breeds of cattle in the study sample were assigned
to four main breed-groups (i.e.: (i) indigenous Zebu, (ii) Zebu ·
Guzerat, (iii) Zebu · B. taurus, (iv) predominantly B. taurus)
either on the basis of farmer recall or, where available, genotype
information (Tebug et al. 2016). All animals from each study
had LW assessed gravimetrically using digital electronic weigh
scales and HG measured simultaneously.

Analytical approach
(i) The two datasets were examined both separately and in
combination. These datasets were analysed and plotted using

Table 1. Summary of studies (n = 9) investigating the relationship between heart girth and liveweight (LW) for B. taurus and B. indicus cattle

Country Breed/type Type Class LW (kg)
range/mean

No. of
animals

No. of
records

R2 Regression algorithm

TanzaniaA E.A. shorthorn Zebu Beef All 106–409 300 – 0.88 4.55X –409
– – Male 106–409 195 – 0.88 4.81X –410

– Female 180–387 105 – 0.87 6.24X –525
TanzaniaB B. taurus XB. Indicus – Cows >2 years 324.8 71 1076 0.68 4.659X –430.84

– Heifers <2 years 226.9 68 1033 0.83 4.15X –362.0
– – Calves 64.3 35 424 0.88 1.6X –81.60

GambiaC N’Dama – Males – 1906 – 0.82 4.27X –363.79
– Females – 1038 – 0.56 3.1X –212.48

TurkeyD Brown Swiss Dairy NA – 44 925 0.9 4.899X –461.05
USAE Guernsey and Friesian Dairy Bulls 387–1069 50 – 0.95 21.03X –1285.18
EthiopiaF Abyssinian

short-horned Zebu
Draft Males 281+ –37 48 –1100 0.75 4.21X –364.9

NigeriaG White Fulani – Female – 110 – 0.86 4.49X –410.6
Sukoto Gudali – Female – 80 – 0.94 4.06 X –343.5
N’dama – female – 26 – 0.96 3.75X –320.4

S. AfricaH Nguni – All – 725 – 0.74 .81X +16.58
– Female 268–470 60 – 0.9 5.13X –504.68

PhilippinesI Brahman Beef All 268–660 94 – 0.94 6.55X –738.26
– Male 302–660 34 – 0.93 6.88X –780.42

AKashoma et al. (2011).
BMsangi et al. (1999).
CSpencer et al. (1986).
DBozkurt (2006).
EBranton and Salisbury (1946).
FGoe et al. (2001).
GBuvanendran et al. (1980).
HNesamvuni et al. (2000).
IBagui and Valdez (2009).
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HGas the predictor variable and themeasuredLWas the response
variable (Fig. 1).

We compared the West and East African populations using
analysis of covariance (ANCOVA: using the AOV function in
the software page R version 3.0.3, (R Development Core Team,
2010) on the entire population using the region (East vs West
Africa) as a fixed factor and HG as a co-variant. To facilitate
comparison with other studies (Table 1) we first used a simple
linear regression model (SLR) to predict LW using HG (1).

LW ¼ aþ bðHGÞ ð1Þ
We then considered five other relationships including log-

transformation and quadratic equations as methods to minimise
PE, but decided on the three models that appeared to produce
the strongest relationships between LW and HG. The first was
a square-root transformation of LW using a simple linear
regression model (SQRT-LR) (2).

HLW ¼ aþ bðHGÞ ð2Þ
The second also transformed the response variable using

a likelihood maximised Box–Cox transformation, h(y, l) =
(yl – 1)/l, l = 0, to estimate the power coefficient to estimate
the power coefficient (Box and Cox 1964). The power coefficient
was determined using the Box–Cox function in R, using
boundaries of –1 and 1 and a step of 0.001. The transformed
LW was then used in a linear regression (BOXCOX-LR) (3).

LW0:3595 ¼ aþ bðHGÞ ð3Þ
The final model examined was a quadratic equation

(QUAD) (4).

LW ¼ aþ bðHGÞ þ cðHGÞ2: ð4Þ
Model goodness-of-fit was analysed using the adjusted R2,

(after back transforming the transformed response variables) and
through examination of residual plots, normal probability plots
and leverage plots. The residual plots were used to identify points
with large associated residuals (possible outliers), whereas the
normal probability plot was used to check linearity and normality

assumptions. The leverage plots were used to detect data points
with unusually high influence (Cook 1977). Outliers noted on
the diagnostic plots were investigated and either corrected when
possible (i.e. simple transcription error) or removed and the
resulting dataset was re-analysed. In total, only 4 of the 1064
data points were removed. In addition to R2 we estimated PE
((ABS (measured LW – predicted LW))/measured LW) as well
as the root mean squared error (RMSE). The two datasets
plus the aggregated set were analysed using cross validation
techniques as follows: datasets were split into two; 70% of
the measurements were used to train the model (training
set), whereas the other 30% were used to validate the model
(validation set). The 75th, 90th and 95th percentiles for PE (i.e.
what is the percent error required to capture 75%, 90% or 95%
of the measurements) were calculated. The cross validation for
each model (Eqns 1–4) and each dataset were repeated 1000
times using different splits for the cross validation each time,
and descriptive statistics (X, s.d., coefficent of variation (c.v.))
were calculated for the PE 75th, 90th and 95th percentiles,
model coefficients and adjusted R2. The PE were then used in
conjunction with the previous criteria given above to determine
the ability of each model type to accurately predict LW from
the HG measurement.

Model validation
To address experimental aim (iii) we employed a further
dataset derived from a mixed (Zebu and Zebu · B. taurus)
smallholder cattle population in the Nyando Basin, Western
Kenya (0�1303000S–0�240000S, 34�54000E–35�403000E; 1200–1750 m
above sea level n = 892, LW: range: 11.6–361.6 kg, · = 165.0 kg,
s.e.m.: 1.45 kg; A. Onyango, pers. comm.). In total 1890
measurements were used (some animals were measured 2–4
times) as a secondary validation set. Using the parameters
estimated from each of the models tested here and three
models from other published studies, two using SLR (Msangi
et al. (1999), Kashoma et al. (2011)) and the Lesosky et al.
(2012) Box–Cox transformation linear regression, we calculated
the expected LW from the HG measurements. We then
calculated the 75th, 90th and 95th percentiles of the PE (i.e.
the percent error that contains 75%, 90% or 95% of the correct
LW). Again, diagnostic plots were used to identify outliers
(data points with unusually high residual values, or high
leverage), which were either corrected when possible or
removed. There was a total of 11 data points removed from
this dataset, resulting in 1879 data points being used for model
validation.

As well as being useful for detecting outliers, the diagnostic
plots also provide a useful visualisation of how well the model
‘fits’ the data. Normal probability (Q-Q) and standardised
residual (residual/s.d. of residuals) plots show whether there is
a systematic bias in the model, whereas the leverage plots
provide an indication of the resilience of a model against
outliers. Therefore, we also used these plots as a qualitative
measure of each model.

Results

The datasets considered for the present study, differed from
the data used in the studies of both Lukuyu et al. (2016)
(LW = 102–433 kg) and Tebug et al. (2016). (LW = 110–618 kg)
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Fig. 1. Cattle liveweights (kg) as a function of heart girth (cm) for two
datasets, one from West Africa (Senegal) and the other from East Africa
(Kenya). Line of bestfit is given for (a) Linear, (b) Square-root transformation
of the response variable, (c) Box–Cox transformation of the response variable
and (d) Quadratic equations.
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in that both of these used attenuated datasets in their analysis
(compared with the original, or full dataset), eliminating
particularly animals of low LW, which had implications in
terms of the linearity of the relationship between LW and HG.

Diagnostics

Examination of the diagnostic plots for the linear regression
model (e.g. residual and standardised residual plots) revealed
that at the tails of the dataset (i.e. very small or very large animals)
there was a strong bias towards positive residuals indicating a
systematic underestimation of the animals’ LW (Fig. 2a).

This systematic bias was not present in the SQRT-LR
(Fig. 2b), BOXCOX-LR (Fig. 2c) or the QUAD models
(Fig. 2d) suggesting that these equations more accurately
reflect true measurements, particularly at the extremes of low
and high weights.

Leverage plots indicate the degree to which a single data
point can alter the model and are therefore useful for examining
the relative robustness of different models to outliers. As shown
in Fig. 3, the QUAD model has points with leverage scores four
times greater than those in the other three models.

All four of the models had adjusted R2 greater than 0.8,
however the values for the SQRT-LR, BOXCOX-LR and QUAD
models were all ~0.05 (5%) greater than the SLR (Table 2). The
RMSE for the two transformed and the QUAD model were all
similar and ~8% less than the SLR model (Table 2). PE for all
models were similar at the 75th percentile, but importantly,
both the two transformed (SQRT-LR, BOXCOX-LR) and the

QUAD model had PE of up to 9% less at the 95th percentile
compared with the SLR model, in both aggregated and
disaggregated datasets.

The SQRT-LR, BOXCOX-LR and QUAD models were also
significant when the dataset was disaggregated into the East and
West African populations, with the adjusted R2 values ranging
between 0.797 and 0.881 and the RMSE ranging between 34.2
and 36.9 (Table 2). Similar to the models run with the full
dataset, SQRT-LR, BOXCOX-LR and QUAD models had
higher adjusted R2, lower RMSE and lower PE (Table 2) than
the SLR model indicating that they again tended to fit the data
more accurately, which was likely due to the poor fit of the SLR
at the extremes of the LW range.

However, disaggregating the combined dataset did not
improve the model substantially, in fact, the adjusted R2 for
the East African dataset decreased compared with the full
dataset (Table 2). This was in agreement the results of the
ANCOVA, which showed that population was not a significant
factor for the SLR (P = 0.675), BOXCOX-LR (P = 0.706) or
SQRT-LR (P = 0.886) models. This suggests that the two
populations, although geographically and phenotypically divergent
were similar enough to be considered a single population where
LW can be effectively predicted by using the same HG algorithm
(s) (refer also Fig. 1).

Model validation

Applying the parameters estimated from each of the models
tested here and three models from other published studies
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using the aggregated dataset to the novel (validation) dataset
produced mixed results. Applying the SLR model from our
own study, and simple linear models from two other published

studies (Msangi et al. 1999; Kashoma et al. 2011) produced
similar, moderate-adjusted R2 (0.47–0.59), and PE of over 70%
at the highest percentiles of PE (Table 3). In comparison, the
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Table 2. Equations for estimating liveweight (LW) of cattle, showing adjusted R2, root mean squared error (RMSE) and prediction errors at the
75th, 90th and 95th percentiles for the tested models (Simple Linear regression (SLR), Square-root transformed linear regression (SQRT-LR),
Box–Cox transformed linear regression (BOXCOX-LR) and quadratic (QUAD)). All equations were significantly different from 0 (P < 0.0001)

Model Algorithm Adj. R2 RMSE Prediction errorsA (percentiles)
75th 90th 95th

Aggregated dataset
SLR LW = –393.4 + 4.4176 * HG 0.828 38.4 ±17% ±26% ±37%
SQRT-LR HLW = –5.7123 + 0.14579 * HG 0.873 35.3 ±15% ±22% ±28%
BOXCOX-LR LW0.3595 = 0.02451 + 0.04894 * HG 0.870 35.3 ±15% ±22% ±28%
QUAD LW = 73.599 – 2.291 * HG + 0.02362 * HG2 0.856 35.2 ±15% ±22% ±29%

East Africa dataset
SLR LW = –397.956 + 4.4125 * HG 0.797 38.3 ±17% ±26% ±35%
SQRT-LR HLW = –5.6554 + 0.1449 * HG 0.836 36.2 ±15% ±23% ±29%
BOXCOX-LR LW0.3595 = 0.01543 + 0.04920 * HG 0.888 36.9 ±14% ±21% ±27%
QUAD LW = 44.46095 – 1.82363 * HG + 0.021629 * HG2 0.818 36.2 ±15% ±23% ±30%

West Africa dataset
SLR LW = –381.193 + 4.3572 * HG 0.833 38.1 ±16% ±25% ±35%
SQRT-LR HLW = –5.509777 + 0.14502 * HG 0.881 34.3 ±14% ±21% ±27%
BOXCOX-LR LW0.3595 = 0.01170 + 0.04876 * HG 0.842 35.2 ±15% ±23% ±29%
QUAD LW = 113.744 – 2.87688 * HG + 0.02583 * HG2 0.865 34.2 ±14% ±21% ±27%

APrediction errors provided are the mean prediction errors from 1000 cross validation estimates.
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more complex models (SQRT-LR, BOXCOX-LR, QUAD)
and the model of Lesosky et al. (2012), displayed high
adjusted R2 (0.91–0.92) and low PE across all percentiles
(Table 3).

Discussion

AlgorithmsusingHGtopredictLWin cattle havebeen repeatedly
demonstrated to be robust, with R2 of 0.75–0.85 and simple
measures of fit, such as R2 or RMSE, are often assumed to be a
reflection of the models’ predictive capacity and precision.
However, the use of diagnostic plots to evaluate goodness-of-
fit inmodels has revealed systematic biases in the use of SLR, not
evident from the use of coefficients of determination as measures
of fit alone. This is most apparent at the extremes of weight range
(i.e. calves andmature animals), which may be why other studies
examined the weight range. The calculated PE of 37% of LW
under optimised conditions for the SLR suggests that the
relationship between HG and LW is not a simple, linear one
and that SLR equations are not particularly useful in describing
the relationship betweenHGandLWor in the accurate estimation
of LW when considering the full range of LW observed in
smallholder cattle populations.

In contrast, transforming the response variable or using a
quadratic equation to describe the relationship between HG and
LW, both eliminates systematic bias (as indicated in diagnostic
plots, see also Figs 2, 3), particularly noticeable at either extreme,
and markedly improves the accuracy of LW estimates.

Intuitively, population characteristics that influence animal
morphology, such as breed (type), sex, degree of maturity or
body condition score, might be assumed to alter the relationship
between HG and LW, and many studies have disaggregated and
analysed their data by one or more of these characteristics (see
Table 1 for examples). That such differences exist is clear from
the different algorithms derived within single populations;
however, this presents practical problems if the object is to
use the algorithms so derived to estimate LW in other animals,
more so if the population(s) to be assessed are different from
the population the equations were derived from.

In this study, we deliberately set out to determine if a widely
applicable algorithm using HG as the single dependent variable
could be developed to accurately estimate LW in a novel
population. Our starting point was to use two geographically

separate populations that differed in breed/type and LWmakeup,
and we clearly showed that, despite these differences they could
be considered as one population for the purposes of determining
the relationship between HG and LW. Despite producing
different algorithms when the populations were separated, this
did not improve the strength of the relationship, or reduce the
(prediction) error in anymeaningfulway.However,we alsonoted
that the SLR equations developed from the datasets we used,
showed lower R2 than the values published by Lukuyu et al.
(2016) and Tebug et al. (2016). We infer from this and the
graphical structure of the HG/LW distribution (Fig. 1), that
this is a result of our equations being derived from the full
range of LW and demonstrates the non-linearity of HG/LW
over the full LW range.

Applying the algorithms we developed to our validation
dataset highlighted two key points. First, although the
validation dataset was probably reasonably similar to the
(aggregated) development population, being a mixture of
indigenous and crossbred cattle (but with a different LW
range), applying both our SLR equation and those from two
other published studies, produced such large (72–87%) PE as to
make them inapplicable for practical purposes. In contrast,
applying the more complex algorithms from our study (SQRT-
LR, BOXCOX-LR, QUAD) and the Box–Cox transformation
of Lesosky et al. (2012), all produced PE of less than 25% at
the highest percentile, with the Box–Cox transformations and
QUAD algorithm showing the lowest PE (18–19%), indicating
that such equations may be able to be validly applied in other,
novel populations. Of these, the quadratic model (QUAD) is
possibly less useful given the likely influential effect of small
subsets of a population on the equations developed and the
increased complexity of the model does not noticeably
improve either the fit (R2) or the prediction accuracy.

The reasons that the PEof the transformed equations are even
lower in the validation dataset (than the development set) are
difficult to define. One reason may be that the LW of the
validation set occurred over a smaller range compared with
the development dataset, and thus showed less variability than
the development dataset. A second reason may be that
measurements taken in the validation population were all
made by one experienced operator and so had lower operator
(random) error.

Table 3. Validation of equations from the aggregated dataset of West and East African cattle using an unrelated dataset of cattle from the Nyando
region (WesternKenya) for estimating liveweight (LW)of cattle, showingadjustedR2, andprediction errors at the 75th, 90th and95thpercentiles for the
tested models (Simple Linear regression (SLR), Square-root transformed linear regression (SQRT-LR), Box–Cox transformed linear regression
(BOXCOX-LR) and quadratic (QUAD)) plus a comparison with three other prediction equations from the extant literature. All equations were

significantly different from 0 (P < 0.0001)

Model Algorithm Adj. R2 Prediction errors (percentiles)
75th 90th 95th

SLR LW = –393.4 + 4.4176 * HG 0.594 ±15% ±41% ±82%
SQRT-LR HLW = –5.7123 + 0.14579 * HG 0.918 ±13% ±19% ±24%
BOXCOX-LR LW0.3595 = 0.02451 + 0.04894 * HG 0.922 ±10% ±15% ±18%
QUAD LW = 73.599 – 2.291 * HG + 0.02362 * HG2 0.920 ±10% ±15% ±18%
(from Lesosky et al. 2012) LW0.262 = 0.95 + 0.022 * HG 0.913 ±12% ±17% ±19%
(from Kashoma et al. 2011) LW = –409 + 4.55 * HG 0.551 ±16% ±44% ±87%
(from Msangi et al. 1999) LW = –430.84 + 4.659 * HG 0.470 ±16% ±38% ±72%
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Irrespective of this, it is clear that using either a quadratic
model (QUAD) or a square-root (SQRT-LR) or Box–Cox
(BOXCOX-LR) transformation (of the response variable) in a
linear regression, makes the prediction of LW from HG more
reliable over the full range of observed LW, considerably
reducing bias and PE. Further, considering the results
observed in applying those algorithms to our validation dataset
it appears that the algorithms developed from this dataset may be
widely applicable, at least to the types of cattle typically held by
sedentary smallholder farmers, although further exploration is
needed to confirm this.

There are limitations to the utility of HG in estimating LW
however. PE of ~25% (at the 95th percentile) indicate that the
HG/LW relationship using non-SLR equations is sufficiently
accurate to be used in veterinary applications and are much
better than farmer visual-assessment estimates (Machila et al.
2008). It is important to recognise however that our improved
HG-derived estimates are still not sufficiently sensitive to reliably
capture relatively small changes in LW, such as those commonly
observed seasonally in smallholder cattle, (observed to be in the
range of 11–17% of LW; A. Onyango, pers. comm.) and
conventional scales will continue to be required to capture data
of this sort.

Conclusion

The HG measurements, although demonstrably inferior to
gravimetric methods for assessing LW, have clear advantages of
accessibility and ease of use. We have optimised HG algorithms,
significantly reducing PE associated with HG-derived estimates
of LW. The improved algorithms may be used with higher
confidence for animal health applications and to assist farmers
in decision-making – in feed formulation, marketing, joining or
otherhusbandry-related issues.Thealgorithmsusinga transformed
response variable, (Box–Cox, or square-root transformation) or
quadratic equations developed in this study, may also be applied
directly to other populations of smallholder cattle in SSA, without
the need to undertake extensive testing and further development of
new algorithms for each new population of interest.

Improving LW estimation (through improving the accuracy
of HG-derived measurements) has the potential to improve the
livelihoods of smallholders in Africa through allowing farmers
to make better-informed management decisions regarding their
animals. It is also clear that estimates ofLWfromHGmeasurements
are limited in their accuracy, despite improvements and are not
of sufficient precision to capture the seasonal variations in LW
that may be of interest from a research perspective or to be an
equivalent alternative to well-calibrated weighing scales, where
such an option exists.
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