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ABSTRACT

Context. Angus SteerSELECT is a genomic tool designed to provide genomic estimated breeding
values (GEBV) for nine traits related to growth, feedlot performance, carcase characteristics and
immune competence. At present, GEBV for carcase characteristics are based on a reference
population of 3766 Australian Angus steers. Aims. We aimed to investigate the potential benefit
of incorporating commercial data into the existing reference population of the Angus SteerSELECT.
To this aim, we employ a population of 2124 genotyped commercial Angus steers with carcase
performance data from four commercial feedlot operators.Methods. The benefit of incorporating
the commercial data (COMM) into the reference (REFE) population was assessed in terms of quality
and integrity of the COMM data and meta-data to model the phenotypes adequately. We computed
bias, dispersion, and accuracy of GEBV for carcase weight (CWT) and marbling (MARB) before and
after including the COMM data, in whole or in partial, into the REFE population. Key results. The
genomic estimate of the Angus content in the COMM population averaged 96.9% and ranged from
32.87% to 100%. For CWT, the estimates of heritability were 0.419 ± 0.026 and 0.368 ± 0.038 for
the REFE and COMM populations respectively, and with a genetic correlation of 0.756 ± 0.068. For
MARB, the same three parameter estimates were 0.357 ± 0.027, 0.340 ± 0.038 and 0.879 ± 0.073
respectively. The ACC of CWT GEBV increased significantly (P < 0.0001) from 0.475 when the
COMM population was not part of the REFE to 0.546 (or 15%) when a random 50% of the
COMM population was included in the REFE. Similarly significant increases in ACC were observed
for MARB GEBV (0.470–0.521 or 11%). Conclusions. The strong genomic relationship between
the REFE and the COMM populations, coupled with the significant increases in GEBV accuracies,
demonstrated the potential benefits of including the COMM population into the reference population
of a future improved version of the Angus SteerSELECT genomic tool. Implications. Commercial
feedlot operators finishing animals with a strong Angus breed component will benefit from having
their data represented in the reference population of the Angus SteerSELECT genomic tool.
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Introduction

Genomic-based technologies are allowing commercial beef producers to predict the genetic 
merit of individual animals in their herds of unknown pedigree for the first time (Reverter 
et al. 2016; Hine et al. 2021; Alexandre et al. 2022). Angus SteerSELECT is a genomic-based 
tool that aims to predict the performance of Australian Angus steers during feedlot 
finishing, especifically in commercial Australian feedlots. It provides genomic predictions 
for a range of traits including growth, feed intake, carcase and immune competence. The 
ability of Angus SteerSELECT to predict differences in performance, in terms of carcase 
weight, marbling score, ossification score and carcase value, has been previously 
validated by Hine et al. (2021) by using a population of 522 short-fed (100 days) or 
long-fed (270 days) Angus steers finished in commercial feedlots. 
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Over the past decade, a great deal of effort has been 
devoted towards finding and understanding the factors 
influencing genomic prediction accuracy. These include the 
size of the reference population (Daetwyler et al. 2008; 
Goddard 2009; Habier et al. 2010), heritability of the trait 
(Goddard 2009; Daetwyler et al. 2010), relatedness between 
reference and validation population (de Roos et al. 2009; 
Wientjes et al. 2013), linkage disequilibrium (LD) between 
single-nucleotide polymorphism (SNP) markers and 
quantitative train loci (QTL; Habier et al. 2007; Wientjes 
et al. 2013), marker density (Meuwissen and Goddard 2010; 
Clark et al. 2011), number of QTL (Daetwyler et al. 2010; 
Clark et al. 2011), and minor allele frequencies of causative 
mutations and the SNP markers used in the predictions 
(Druet et al. 2014; Wientjes et al. 2015). 

De los Campos et al. (2013) argued that the critical factor 
driving accuracy is the extent to which marker-based relation-
ships properly describe the unobserved genetic relationships 
at trait loci. Hence, if the training and test data sets have 
related individuals, the markers can be good predictors 
even if the LD between markers and trait genes is weak (see 
also Wray et al. 2013). 

From these findings, here we have focussed primarily on 
improving our understanding of the effect of the size of the 
reference population and its genomic relationship with the 
validation population, specifically as it relates to the Angus 
SteerSELECT genomic tool. These factors are of interest as 
they are operational (as opposed to biological) and can be 
manipulated during the development and application of a 
genomic selection program. 

A recent study by Takeda et al. (2021) with Japanese Black 
cattle population showed that for carcase traits, a total of 
7000–11 000 animals is a sufficient reference population size 
for genomic prediction. In this sense, previous studies have 
explored the benefits of expanding the reference popula-
tion, such as, for instance, incorporating multiple breeds in 
the context of crossbreeding programs and for the selection 
of purebreds for optimal crossbred performance (Porto-Neto 
et al. 2015; van Grevenhof and van der Werf 2015; Karaman 
et al. 2021). 

In the present study, we explore the potential benefits of 
incorporating data from commercial un-pedigreed and un-
registered cattle into the existing reference population of 
the Angus SteerSELECT genomic tool. 

Materials and methods

Reference and commercial population details

For carcase traits, the reference (REFE) population underpinn-
ing the Angus SteerSELECT tools currently comprises 
phenotypes and genotypes for 3766 Angus steers that were 
progeny of the Australian Angus Sire Benchmarking Program 
(ASBP), representing Years 1–8 of the program (described as 

Cohorts 1–8 with 360, 514, 570, 273, 547, 559, 520 and 423 
steers respectively). The ASBP is a major initiative of Angus 
Australia, with support from Meat & Livestock Australia 
(MLA) and industry partners, that aims to generate progeny 
test data on contemporary Angus bulls, particularly for 
hard-to-measure traits such as feed efficiency, carcase measure-
ments, meat-quality attributes and female reproduction 
(https://www.angusaustralia.com.au/sire-benchmarking). 

The contemporary group (CG) for steers in the REFE 
population (CGR) was defined as a combination of cohort, 
property of origin, month of birth, management group and 
date of phenotype measurement. Management group accounted 
for some steers being short-fed (~100 days) and others long-fed 
(~270 days) during the feedlot period. In total, there were 105 
CGR with an average of 35.9 steers per CG and ranging from 5 to 
213 steers per CG. 

After initial edits aimed at removing steers without 
genotypes or from CG with fewer than five individuals, the 
commercial (COMM) population comprised 2124 Angus-
based steers from four commercial feedlots identified herein 
as Flot_1 (N = 453), Flot_2 (N = 720), Flot_3 (N = 495 steers) 
and Flot_4 (N = 456). The CG for the COMM population (CGC) 
was defined as a combination of feedlot, supplier (N = 19), 
abattoir and kill date. Steers were slaughtered in 23 kill 
groups from 18 January 2021 to 2 June 2022. There were 
46 CGC, with an average of 46.2 steers per CG and ranging 
from 5 to 271 steers per CG. 

For the present study, phenotypes for the REFE population 
included hot carcase weight (CWT) and Meat Standards 
Australia marbling score (MSA-MARB) measured in scores 
ranging from 100 to 1100 in increments of 10, with higher 
scores indicating greater marbling (McGilchrist et al. 2019). 
For the COMM population, phenotypes included CWT and 
AUSMEAT marbling score using the AUSMEAT scoring 
system, which ranges from 0 (nil) to 9 (abundant) in incre-
ments of 1 (AUS-MEAT 2005). 

Genotypes for 45 364 autosomal SNPs were available 
for all the animals included in this study (i.e. 3766 
REFE + 2124 COMM = 5890 total) and were used to compute 
the genomic relationship matrix (G) following Method 1 of 
VanRaden (2008), with the modification of Karoui et al. 
(2012) to make it invertible, as follows: 

SST 
G = 0.95 · + 0.05 · I;

2Σpið1 − piÞ 

where S is the centred matrix relating SNP genotypes (recoded 
as 0, 1 or 2) in columns with animals in rows, and pi is the 
frequency of the second allele of the ith SNP, and I is an 
identity matrix included to make the genomic relationship 
matrix (GRM) invertible by enlarging the diagonal elements. 

To obtain a measure of the genomic similarity between the 
two populations, we explored the SNP allele frequencies, the 
values of the GRM and performed a principal-component 
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analysis (PCA) on the basis of a singular value decomposition 
of the GRM (Misztal and Legarra 2017). 

Genomic predictions and cross-validation models

Variance components, heritability (h2), genetic (rg) and  residual  
(re) correlations were estimated on the basis of GBLUP 
methodology using the Qxpak5 software (Pérez-Enciso and 
Misztal 2011). For the genomic prediction models, we 
performed GBLUP analyses by using a series of uni- and bi-
variate analyses and three cross-validation schemes. In all 
cases, for the REFE population, the GBLUP models for the 
analysis of CWT and MSA-MARB contained the fixed effects 
of CGR and age of dam in years (AOD, six levels, 2–7+ years) 
and the linear regression covariates of age at measurement 
(AGE) in days, and the first three principal components of the 
GRM. Similarly, for the COMM population, the GBLUP models 
for the analysis of CWT and AUS-MARB contained the fixed 
effect of CGC and the linear regression covariates of days on 
feed (DOF), and the first three principal components of the GRM. 

Additionally, the random additive polygenic and residual 
effects were fitted in the GBLUP models with assumed distribu-
tions N(0, G ⊗ V) and  N(0, I ⊗ R) respectively, where G 
represents the genomic relationship matrix described earlier, 
V is the genetic co-variance matrix, I is an identity matrix, R 
is the residual variance–covariance matrix and ⊗ represents 
the Kronecker product. 

First, to obtain a measure of the genetic similarity, based on 
h2 and rg for a given trait in the two populations, we fitted two 
bi-variate GBLUP models. The first bi-variate model treated 
CWT as a different trait in the two populations. The second 
bi-variate model contained MSA-MARB and AUS-MARB for 
REFE and COMM respectively. The intent was to confirm 
that each trait had similar h2 in both populations and, 
equally importantly, a strong positive rg. 

Second, the genotypes and phenotypes from both popula-
tions were merged into a single dataset and, for each trait 
CWT and MARB, the resulting genomic estimated breeding 
values (GEBV) from the analysis using this merged dataset 
are termed ûw to indicate that they are based on the whole
dataset. Before merging them, phenotypes were adjusted for 
fixed effects and covariates, and, within population, standard-
ised using the z-score transformation (i.e. dividing by the 
within-population standard deviation). This was particularly 
important for marbling traits as they were measured on 
different scales in the two populations. 

Third, for the cross-validation of genomic predictions, we 
employed three validation scenarios (VAL1, VAL2 and VAL3) 
depending on how many COMM phenotypes were included in 
the reference population, as follows: 

1. VAL1 – all-out: no commercial phenotypes were included
in the reference population. So, the reference population
comprised the original REFE of 3766 steers with genotypes
and phenotypes.

2. VAL2 – leave-one-feedlot-out: phenotypes from a given
feedlot were excluded from the reference, while those
from the remaining three feedlots were included. This
approach was repeated four times, excluding phenotypes
from one of the four feedlots each time.

3. VAL3 – leave-half-out: a random 50% of the COMM
phenotypes across all feedlots were included in the
reference, with the remainder being excluded from the
reference but included in the validation.

In each cross-validation schema, the resulting GEBV from
the analyses that treated as missing values records from a 
given commercial feedlot are termed ûp to indicate that
they are based on partial data. 

Finally, traditional (Bolormaa et al. 2013) and linear regres-
sion (LR) method (Legarra and Reverter 2018) approaches
were used to estimate accuracy, bias and dispersion of 
GEBV. The following four metrics were employed: 

1. Traditional accuracy (ACCT): in the context of cross-
validation, the accuracy of a GEBV is traditionally computed
from the Pearson correlation between a GEBV and the
adjusted phenotype (y*: phenotype  y adjusted for fixed
effects) for individuals in the validation population, and
divided by the square root of heritability, as follows:

2. Method LR accuracy (ACCLR): for individuals in the
validation population, Method LR accuracy was computed
as follows:

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
covðûw, ûpÞACCLR = ð1 + F̄ − 2f̄  Þσ2 

g,∞ 

¯where F is the average inbreeding coefficient, 2f̄ is the
average relationship between individuals, and σg 2,∞ is
the genetic variance at equilibrium in a population 
under selection. Assuming the individuals in the valida-
tion population are not under selection, σg 2,∞ can be
approximated by the additive genetic variance estimated 
from the partial dataset. 

3. Method LR bias (BiasLR): difference among the average
GEBVs of individuals in the validation population by using
the partial data minus that using the whole data, as follows:

¯BiasLR = ûp − u ¯̂w 

In the absence of bias, the expected value of BiasLR is zero, 
while positive and negative values indicate respec-
tively, over-estimation and under-estimation of GEBV for 
validation animals when their own observation was not 
included. 
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4. Method LR dispersion (DispLR): for individuals in the 
validation population, dispersion was measured from 
the slope of the regression of ûw on ûp, as follows: 

covðû w, ûpÞDispLR = 1 − 
varðûpÞ 

In the absence of bias, the expected value of DispLR is 0. 
Values less than 0 indicate under-dispersion (or deflation) 
of ûp into ûw as phenotypes become available. Values greater 
than 1 indicate over-dispersion (or inflation) of ûp into ûw. 

For bias and dispersion, we constructed 95% confidence 
intervals based on ±1.96 s.e. around the observed means 
across the 24 scenarios, i.e. 2 traits × 4 feedlots × 3 
validation schemes. 

Results and discussion

Phenotypes, fixed effects and covariates

Table 1 provides summary statistics for all phenotypes and 
covariates used in the analyses. For the REFE population, 
two steers had missing CWT and four had missing MSA-
MARB. For the COMM population, the number of records 
with AUS-MARB scores of 1–9 was 36, 323, 817, 419, 337, 
130, 44, 14, and 4 respectively. 

For the REFE population, the fixed effects and covariates 
accounted for 77.9% and 38.6% of the variation in CWT 
and MSA-MARB respectively, and with all effects being highly 
significant (P < 0.001), except for slaughter age (P > 0.1), 
which was likely to have been captured by the effect of CGR. 
In comparison, for the COMM population, the fixed effects 
and covariates accounted for 62.9% and 42.1% of the variation 
in CWT and AUS-MARB respectively, and with all effects being 
highly significant (P < 0.001), except for DOF (P > 0.1), which 
was likely to have been captured by the effect of Feedlot and 
CGC. The average DOF (±standard deviation, s.d.) for Flot_1, 
Flot_2, Flot_3 and Flot_4 was 230.49 ± 8.03, 182.10 ± 8.77, 
224.67 ± 47.18, and 275.81 ± 0.98. The longest DOF, with 

the smallest variation, was observed for Flot_4 due to 
steers being either 275 DOF (N = 271 steers) or 277 DOF 
(N = 185 steers). Table 2 presents the least-square means 
for CWT and AUS-MARB, across the four feedlots. Steers 
from Flot_4 had heavier CWT (P < 0.01) than those from 
the other three feedlots (reflecting additional DOF), which 
were not different from each other (P > 0.10). However, 
the ranking in CWT was not matched by the ranking in 
AUS-MARB, for which Flot_2 < Flot_4 = Flot_3 < Flot_1. 

Fig. 1 shows the violin plots of the distribution of CWT 
observation in the REFE population and from each of the four 
feedlots represented in the COMM population. The apparent 
bimodality of the CWT records from the REFE population was 
attributed to some steers being short-fed (~100 days) and 
others being long-fed (~270 days) during the feedlot period. 

Genotypes, genomic relationships and genetic
parameters

Across the 45 364 SNPs, the correlation between the 
frequency of the first allele in the REFE and in the COMM 
population was very high at 0.996. In agreement with 
theoretical expectations, the 5890 diagonal elements of the 
genomic relationship matrix G created with the combined 
population averaged 1.001, with a standard deviation (s.d.) 
of 0.031, and ranged from 0.914 to 1.337. Meanwhile, the 
17 343 105 off-diagonal elements of G averaged −0.000, 
with a s.d. of 0.025, and ranged from −0.112 to 0.657. These 
values are very similar to the ones reported by Reverter et al. 
(2021a) using a population of 3715 Angus steers and heifers 
that were progeny of ASBP sires. Also, the similarity in the 
variance of diagonal and off-diagonal elements indicates 
that both a sufficiently large number of SNPs was used to 
estimate relationships and the presence of a single-breed 
population (Simeone et al. 2011). Finally, the PCA of G did 
not show any clusters in the combined population, with the 
first three PCs accounting for only 0.79%, 0.52% and 0.43% 
of genomic diversity respectively. These results further 
confirmed the high Angus content of the steers in the COMM 
population. 

Table 1. Summary statistics, including mean, standard deviation (s.d.), minimum and maximum for the carcase traits and covariates in the two
studied populations.

Population Variable N Mean s.d. Min. Max.

REFE AGE (days) 3766 726.89 98.71 505.00 990.00

CWT (kg) 3764 427.09 66.85 211.30 607.00

MARB (score) 3762 492.26 125.88 160.00 1030.00

COMM DOF (days) 2124 222.46 41.67 159.00 277.00

CWT (kg) 2124 425.45 43.94 292.40 575.00

MARB (score) 2124 3.64 1.33 1.00 9.00

REFE, reference population; COMM, commercial population; AGE, slaughter age; CWT, hot carcase weight; MARB, marbling score (MSA and AUSMEAT score for
REFE and COMM respectively); DOF, days on feed.
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Table 2. Number of records (N) and least-square means (± standard
error, s.e.) for carcase traits for each feedlot in the commercial
population of 2124 steers.

Feedlot N CWT (kg) MARB (score)

Flot_1 453 407.43a ± 2.13 4.81a ± 0.08

Flot_2 720 413.43a ± 7.23 2.87b ± 0.27

Flot_3 495 408.25a ± 4.52 3.70c ± 0.17

Flot_4 456 466.41b ± 10.60 3.07c ± 0.40

CWT, hot carcase weight; MARB, AUSMEAT marbling score.
Within a trait, values with different letters indicate significant difference (at
P = 0.01).

On the basis of previously described approaches to estimate 
genomic breed composition (Reverter et al. 2020), using the 
45 364 SNPs, the genomic estimate of the Angus content in 
the COMM population averaged 96.9% and ranged from 
32.87% to 100%. Of the 2124 steers, 1703 (or 80.2%) were 
estimated to be 100% Angus, while a further 229 steers 
(10.8%) being estimated to have an Angus content <100% 
but ≥87.5% (or 7/8). 

After fitting the bi-variate GBLUP model that treated the 
same trait (CWT or MARB) as a different trait in the two 
populations (REFE and COMM), the estimates (mean ± s.e.) 
of heritability (h2) for CWT were 0.419 ± 0.026 and 
0.368 ± 0.038 for the REFE and COMM population respec-
tively, and with a genetic correlation (rg) of 0.756 ± 0.068. 
For MARB, the same three parameter estimates were 
0.357 ± 0.027, 0.340 ± 0.038 and 0.879 ± 0.073 respec-
tively. Again, the similar h2 estimates for a given trait in 
the two populations coupled with the strong rg point 

towards the convenience of merging both populations into 
a single larger reference population. 

Very similar to the h2 estimates reported here, the review 
of Ríos Utrera and Van Vleck (2004) reported average h2 

estimates for CWT and MARB score of 0.40 and 0.37 respec-
tively. However, using a subset of the Australian Angus cattle 
employed here, higher h2 estimates for CWT and MARB have 
been published, including the 0.75 ± 0.06 and 0.53 ± 0.05 
respectively, of Duff et al. (2021), and the 0.63 ± 0.11 and 
0.61 ± 0.09 respectively, of Reverter et al. (2021b). 

There is a body of literature describing the strong 
relationship between different measures of marbling (for a 
recent account, see, for instance, Liu et al. (2021) and Martín 
et al. (2022)). Liu et al. (2021) reported a phenotypic 
correlation of 0.91 (P < 0.001) between AUS-MARB and 
MSA-MARB. Mateescu et al. (2015) reported a rg estimate 
of 1.00 ± 0.01 between marbling score and intramuscular 
fat content. 

Genomic predictions and cross-validation results

The genomic prediction accuracies for both traits across four 
commercial feedlots are shown in Fig. 2. Averaged across all 
feedlots and based on both accuracy metrics (ACCT and 
ACCLR), genomic prediction accuracy for CWT increased from 
VAL1 (ACCT = 0.356; ACCLR = 0.475) to VAL2 (ACCT = 0.420; 
ACCLR = 0.524) to VAL3 (ACCT = 0.485; ACCLR = 0.546). 

Similar to our previous findings (Reverter et al. 2021b), in 
the present study we observed a strong correlation between 
ACCT and ACCLR across the 24 measures (r = 0.603 ± 0.170), 
and, on average, the ACCLR accuracies were 15% higher 
than ACCT accuracies (0.511 vs 0.444) and less variable 
(s.d. = 0.038 vs 0.106). 

600 
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400 

300 

200 

C
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T 
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Fig. 1. Violin plot of the distribution of carcase weight (CWT) in the reference population (REFE) and from each
of the four feedlots of the commercial population.
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Fig. 2. Genomic prediction accuracy based on traditional accuracy, ACC_T (top panel), and LR method accuracy,
ACC_LR (bottom panel), for CWT and MARB in the four feedlots (Flot_1, Flot_2, Flot_3 and Flot_4) and for the
three validation schemes (VAL1, VAL2 and VAL3).
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The increase in prediction accuracy from VAL1 to VAL2 
can be attributed in part to relationships between the steers 
from the feedlot being validated and the steers from the 
other feedlots, but also to an increase in the size of the new 
reference population, i.e. the original REFE population of 
3766 steers plus all the steers from the other feedlots. 
However, the increase in accuracy from VAL2 to VAL3 can 
be mostly attributed to relationships between steers from 
the same feedlot to the one being validated. It is worth 
noting that the reference population for VAL3 comprised 
4796 steers (the original 3766 steers from REFE plus a 
random 1030 steers from COMM), which is less than the 
number of steers in the reference populations for VAL2 (the 
original 3766 steers from REFE plus all the steers from 
COMM except those from the feedlot being validated). As 
commercial feedlot operators tend to source their steers from 
‘preferred’ suppliers, the increase in accuracy observed in 
VAL3 relative to VAL2, and even with a smaller reference 
in VAL3, highlights the importance of having their own 
cattle represented in the reference population. 

The 95% confidence interval for GEBV bias contained zero 
in 22 of the 24 scenarios considered (Fig. 3). The two 
anomalous scenarios correspond to CWT GEBV for Flot_2 
steers being over-estimated. While further research is needed 
to ascertain the reason for this over-estimation, one possibility 
points towards the difficulty in modelling data from Flot_2 as 
it represents the largest sample size (720 steers compared 
with <500 for the other feedlots) across the largest number 
of suppliers (10 compared with the second-largest 6 for 
Flot_4). Nevertheless, this over-estimation vanishes at 99% 
confidence interval. 

The 95% confidence intervals for the dispersion in GEBV 
showed a tendency for over-dispersion (or inflation), 
particularly for Flot_2 steers across both traits, and for 
Flot_3 steers in CWT and for Flot_1 steers in MARB. Again, 
while further research is needed to ascertain the reason for 
this inflation, a plausible reason is the use of an incorrect 
heritability, in this case higher for inflation, or the existence 
of a hidden trend in the data (Macedo et al. 2020). Similarly, 
this over-dispersion was observed in our previous study 
(Reverter et al. 2022) and attributed to higher h2 estimates 

Bias: 95% confidence interval 
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Fig. 3. Prediction bias 95% confidence interval across the 24 scenarios: two traits (CWT and MARB) by
four feedlots (Flot_1, Flot_2, Flot_3 and Flot_4) and for the three validation schemes (VAL1, VAL2 and
VAL3).
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Fig. 4. Prediction dispersion 95% confidence interval across the 24 scenarios: two traits (CWT and
MARB) by four feedlots (Flot_1, Flot_2, Flot_3 and Flot_4) and for the three validation schemes
(VAL1, VAL2 and VAL3).
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when phenotypes of the validation cohort were treated as 
missing values compared with h2 estimates, using the whole 
dataset (Fig. 4). 

Conclusions

Notwithstanding the importance of and difficulty in accu-
rately modelling phenotypes from commercial operations, 
where data recording practices could be less stringent than 
in seedstock operations and research herds, the present 
study has highlighted the potential benefits of incorporating 
commercial data from Angus-based beef supply chain, which 
are independent of the ASBP and the Angus Australia 
reference population, into the existing reference population 
of Angus SteerSELECT genomic tool. In addition, the results 
have helped demonstrate to commercial beef producers the 
opportunity to apply genomic tools within commercial popula-
tions as part of routine management, since higher accuracies 
translate into an improved ability to predict performance, 

Feedlot 

Flot_1 
Flot_2 
Flot_3 
Flot_4 

reducing the risk of steers not performing to expectation 
during short- or long-feeding regimes. 
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