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ABSTRACT

This review provides an outline of some of the challenges facing nutritionists in the Australian
aquaculture industry. It commences with a brief description of how aquaculture nutrition
differs from that for terrestrial livestock – the challenges of providing nutrition in aqueous
environments, the diversity of species and the high trophic level of most. Specific challenges of
aquaculture nutrition are then discussed in further detail, including the difficulty of measuring
feed intake and digestibility, the limited ability to use carbohydrates for carnivores, and the
specific requirements of species for lipids, including cholesterol, phospholipids, long-chain
polyunsaturated fatty acids and carotenoids. The review then examines how environmental,
social and governance concerns are leading to new trends in nutrition for the Australian
industry. This includes topics such as the replacement of wild-caught fish meal and fish oil, in
terms of both sources of omega-3 lipids and protein. For the former, possible solutions
include greater use of seafood trimming, algal oil, and GMO-derived products. For the latter,
solutions can include use of livestock render, plant protein meals, fermented products, and
insects. Nutrient discharge is also a concern for the industry and nutritionist can assist by
improving digestibility and nutrient retention from feeds. Finally, the carbon footprint of
aquaculture is leading to new directions for industry and, in turn, for the field of aquaculture
nutrition.

Keywords: alternative ingredients, diet formulations, digestibility, fatty acids, feed intake, nutrient
requirements, protein, sustainable aquaculture.

Introduction

The Australian aquaculture industry supplies to premium markets by leveraging on a 
‘clean and green’ reputation of producing products that are safe to consume, are 
highly regarded for their health benefits and taste and have a low environmental 
impact (Department of Agriculture and Water Resources 2017). The value of the 
industry is a commendable AUD1.6 billion (Steven et al. 2021), despite its small size 
of just 100 000 t per annum. Furthermore, the industry is growing and is expected to 
produce 150 000 t a year by 2030 (Food and Agriculture Organization of the United 
Nations 2020). Diversification is expected to broaden the range of aquaculture 
products on offer and supplement the current important species for Australian 
aquaculture, namely, Atlantic salmon (Salmo salar), barramundi (Lates calcarifer) and  
black tiger prawn (Penaeus monodon), which together represent over 70% of the total 
farmed value for fed aquaculture (Steven et al. 2021). 

This review provides an outline of some of the challenges faced by aquaculture 
nutritionists and by the Australian aquaculture industry. It comprises the following 
three sections: (1) an initial overview of how aquaculture broadly differs from that of 
terrestrial livestock; (2) an overview of specific challenges of nutrition-based research 
that remain unresolved; and (3) an examination of how environmental, social and 
governance (ESG) concerns are leading the aquaculture industry in new directions and 
how this will influence nutrition research. 
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Overview of differences between nutrition
for aquaculture and terrestrial livestock

Aquaculture nutrition presents a unique set of challenges 
compared with nutrition of terrestrial livestock. The water 
in which animals are reared makes measurement of feed 
intake and observation of feeding behaviours difficult. 
Water also affects how feeds are manufactured, because all 
require a degree of stability in this medium. Unstable feeds 
disintegrate and leach, which reduces the effectiveness of 
feeding and causes greater nutrification of the environment 
(Obaldo et al. 2002; Sørensen 2012). In addition, water 
contains many dissolved minerals and harbours micro-
organisms that might vary throughout the seasons and 
provide additional sources of nutrition (Moriarty 1997; 
Moss et al. 2006; Boyd 2020). Measuring the nutritive 
contribution of each of these is difficult. 

The diversity of species cultured in aquaculture far 
exceeds that of terrestrial livestock. Terrestrial livestock is 
dominated by a handful of species, while aquaculture farms 
are dominated by hundreds of species, which has resulted 
in a limited knowledge and research base specific to each 
species. Species-specific nutritional requirements are very 
hierarchical, with the most commercially important species 
receiving the most research (Rombenso et al. 2021). Knowledge 
is significantly reduced for less commonly cultured species 
including invertebrates such as crabs, lobsters, and shrimp. 
These species present challenges for researchers due to their 
divergence from vertebrates, small size, complex larval 
cycles, unique digestive physiology, feeding habits, and 
diversity. 

Some of Australia’s most  important  species have more  
mature industries overseas and so the local industry can 
leverage off an international body of research and commercial 
practice. This is particularly true for Atlantic salmon, but also 
applies to a lesser extent to other species such as cobia 
(Rachycentron canadum), Queensland grouper (Epinephelus 
lanceolatus), yellowtail kingfish (Seriola lalandi), barramundi 
(Lates calcarifer) and black tiger prawn (Penaeus monodon). In 
contrast, species that are reared only in Australia are often 
poorly known. This includes species such as Murray cod 
(Maccullochella peelii), barcoo grunter (Scortum barcoo) and  
redclaw (Cherax quadricarinatus), as well as many other 
less-cultured species. These species are further neglected as 
the economics of producing bespoke feeds is usually prohibitive, 
because it is costly for feed companies to change feed formula-
tions, manufacture reduced volumes, and fund research into 
these species. Consequently, growers of minor species are 
often reliant on adopting feeds tailored to another animal. 

Most aquaculture species cultured in Australia are 
carnivorous and require high protein diets that vary 
markedly in formulation from those for terrestrial livestock. 
Formulations are rich in energy, protein, essential amino 
acids, lipids and long-chain polyunsaturated fatty acids 
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(LC-PUFA; National Research Council 2011). Aquatic species 
often have a very limited ability to utilise carbohydrates 
(Tacon 1987; Wilson 1994). In addition, there are often 
species-specific requirements for nutrients such as cholesterol 
and phospholipids for crustaceans and LC-PUFA and taurine 
for some fish species (Abramo 1989; Trushenski and Rombenso 
2020; Hardy and Kaushik 2021). These formulation require-
ments strongly distinguish aquaculture from traditional 
livestock production. 

One illustration of how aquaculture varies from terrestrial 
livestock is the area of mineral nutrition. Mineral nutrition 
in aquaculture is strongly affected by the mineral profile of 
the water in which the animals are cultured, rather than 
from dietary sources. Seawater contains many minerals, such 
that most elements do not need to be supplemented (Truong 
et al. 2022a). In freshwater systems, supplementation may 
be required, but often both indirectly by adjusting or main-
taining water chemistry as well as directly via dietary 
supplementation. 

Calcium (Ca) is a good example of how aquaculture and 
terrestrial livestock nutrition differ. This element is 
essential and is described as a macromineral, due to its 
importance to an animal. Despite its importance, Ca 
supplementation for animals grown in seawater is usually 
not required so long as concentrations of available Ca in 
the water are maintained (Fig. 1, derived from Truong 
et al. 2022a). 

Specific challenges in aquaculture nutrition

Measuring feed intake

Feed intake is a key parameter to measure both palatability of 
feeds and feed conversion efficiency. By knowing feed intake, 

Fig. 1. Calcium (Ca) requirements of different species. Points indicate
the value(s) that was recommended. Whiskers indicate the range that
was recommended. Values on the x-axis (x = 0) are not required (NR).
Requirement values were obtained for shrimp species (Penaeus
monodon and vannamei), saltwater (SW) and freshwater (FW) fish
(via Truong et al. 2022b), chicken (Aviagen 2022), swine (Southern
et al. 2012) and beef (National Academies of Sciences 2016).
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nutritionists can make informed decisions about the ingredi-
ents and feed additives (attractants, digestibility enhancers, 
binders) used in formulations (Glencross et al. 2007). 

In aquaculture, feed intake is usually measured for a group 
of animals rather than for individuals (Helland et al. 1996; 
Folorunso et al. 2017; Chen et al. 2020; Truong et al. 2021; 
Yuan et al. 2021). There are various reasons why groups of 
animals are used as compared with individuals. First, there 
is the cost. Housing fish or other animals in individual 
tanks across treatments soon becomes logistically prohibitive. 
There are also behavioural problems whereby species that 
school become stressed when housed alone. Finally, there is 
a sampling issue of trying to measure what was and was 
not eaten for animals that can be quite small, such as 
prawns. For these reasons, group scale measures of feed 
intake have prevailed. 

Technologies have been developed to assist in the 
measurement of feed intake. In a terrestrial system, accurate 
feed-intake measurements are possible with the controlled 
delivery of feed (e.g. automatic/electronic feeding) and 
identification of individuals (e.g. radio-frequency identifi-
cation tags, GPS collars, individual feeders; Andonovic et al. 
2018; Muir et al. 2020; Vargovic et al. 2020; Moss et al. 
2021). However, these technologies are rarely translatable 
to the aqueous environment. Some efforts have been made 
using markers and dyes, X-rays (Jobling et al. 2001) and 
video (Zhou et al. 2018a). However, each of these has 
limitations and broadscale adoption of any of these tech-
nologies has yet to occur. 

The difficulty in measuring feed intake has broad 
implications for aquaculture. In other animal production 
areas such as poultry, great gains have been achieved by 
selecting lines of animals that are most efficient in converting 
feed into product. However, for aquaculture, measuring feed 
intake is difficult and so selective breeding of feed-efficient 
lines rarely occurs, if ever (de Verdal et al. 2018). Instead, 
breeding programs select broodstock principally on growth. 
This discrepancy can lead to the breeding of animals 
that grow quickly through dominance, whereby dominant 
individuals are able to consume more feed than their peers, 
as evident in terrestrial animal examples (Jensen 2006; 
Canario et al. 2012; Adamczyk et al. 2013). If feed intake is 
not considered, the industry could coincidentally develop 
lines that are less feed efficient, not more. 

Measuring digestibility

Accurate measurement of apparent digestibility (AD) is 
essential to characterise the nutritive value of ingredients. 
Apparent digestibility of an ingredient or feed is species-
specific and techniques to measure apparent digestibility 
are reflective of the animal’s digestive system. In terrestrial 
animals, total tract digestibility is determined from excreted 
faeces (McGhee and Stein 2020; Adekoya et al. 2021; Wang 
et al. 2022). This is challenging in aquaculture, because 

nutrients leach from any excreted faeces, making accurate 
estimation of apparent digestibility difficult. To prevent 
leaching, nutritionists prefer to obtain faecal samples before 
they are excreted, either by applying pressure to the 
abdominal cavity (‘stripping’) or by dissection (Storebakken 
et al. 1998; Glencross et al. 2007). However, the collection 
of faeces of sufficient quantity by either of these methods is 
not always possible, particularly for small animals. 

In crustaceans, stripping is not possible as the hard 
exoskeletons prevent the application of enough pressure to 
move digesta along the gastro-intestinal tract (Glencross 
et al. 2007). For large crustaceans such as lobster, faecal-
collection devices have been developed (Irvin and Tabrett 
2005; Simon 2009). However, for small crustaceans such as 
prawns, these techniques are not suitable. Furthermore, 
dissection of prawns has not historically provided enough 
sample for analysis. This has meant that digestibility 
estimates have been obtained by collecting excreted faeces 
from the bottom of tanks that have been exposed to the 
effects of leaching. While important information on feedstuff 
digestibility in shrimp has been acquired over the years by 
using indirect-marker methods on recovered faecal strands, 
there are certain aspects of prawn digestive physiology that 
need to be better understood to satisfy certain digestibility 
marker assumptions (Wade et al. 2018) and leaching losses 
have hindered understanding intricate differences in digestive 
capacity for certain ingredients. 

Techniques for measuring apparent digestibility in prawns 
were recently compared, whereby apparent digestibility 
values obtained using techniques of collecting excreted faeces 
that have been traditionally relied on in prawn nutrition 
where compared with values obtained by dissecting digesta 
(Truong et al. 2022b). These methods showed no difference 
when determining the apparent digestibility of starch and 
lipid. However, significant differences were observed for 
apparent digestibility of crude protein and amino acids, 
which are highly water-soluble. Traditional faecal-collection 
methods that rely on recovering faeces excreted into water 
consistently over-estimated the digestibility of protein and 
amino acids compared with the dissection method, which 
produced more conservative values. For example, protein 
digestibility of fishmeal was 82% when using a faeces-
settlement-in-water method and was 49% when using the 
dissection method (Truong et al. 2022b). The apparent 
digestibility values obtained by dissection are likely closer 
to reality because they agree with the poor protein 
retention efficiency commonly observed in prawns. 

Near-infrared (NIR) spectroscopy has been used as a tool to 
estimate apparent digestibility (Glencross et al. 2015; 
Glencross et al. 2017; Simon et al. 2022). These authors 
developed NIR models to predict the nutrient content of 
diets and faeces from barramundi (Lates calcarifer), rainbow 
trout (Oncorhynchus mykiss) and yellowtail kingfish (Seriola 
lalandi). For example, in kingfish, the NIR model in combi-
nation with a digestibility marker was able to successfully 
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predict, by using a small amount of faeces (<1 g dry weight), 
the nutrient AD of dry matter, protein, and gross energy with a 
degree of error of ±1–3% and lipid with a degree of error of 
±6–8%. These results indicate that such models can play an 
important role in the industry, by providing a rapid and 
cost-effective method to assess apparent digestibility. 

Carbohydrates

A conundrum exists in nutrition of carnivorous fish with the 
use of carbohydrates. Use of carbohydrates is required for the 
structural formation of the feed. However, overuse of the 
carbohydrates can cause health issues for these animals. 
Carbohydrates are required to make the desired physical 
properties of the pellets of feed. These properties include 
high stability in water, texture, buoyancy, and porosity. For 
example, porosity is required to achieve high-lipid diets 
(e.g. higher than 30% dietary lipid content for salmon) 
where extruded pellets are produced to contain air-pockets in 
which oils can be vacuumed-sealed within. In this regard, 
carbohydrates contribute important functional roles to achieve 
specific pellet characteristics. However, while carbohydrates 
are important in feeds for structural purposes, they can cause 
problems if they are fed to carnivorous fish. 

Carnivorous fish such as salmon and barramundi have a 
very limited ability to digest carbohydrates, which contrasts 
strongly with livestock such as poultry (Truong et al. 2016), 
ruminants (National Academies of Sciences 2016) and 
swine (Southern et al. 2012), whereby this food class is the 
major source of energy for production. For carnivorous fish, 
catabolism is inefficient in regard to protein and lipid 
(Azevedo et al. 2005; Sá et al. 2007; Glencross et al. 2017). 
Health issues arise because these animals have no adaptation 
to digest carbohydrates. ‘Fatty liver disease’ in the Australian 
grouper (Epinephelus sp.) industry is an example, whereby 
overfeeding of carbohydrates is thought to be linked to 
pathology whereby animals accumulate too much lipid and 
glycogen in the liver (Nankervis et al. 2022). 

Requirement for specific lipids and pigments

Lipids serve several roles in nutrition as an energy source, 
source of essential fatty acids and facilitate absorption of 
fat-soluble vitamins. For terrestrial animals, many ingredients 
can contribute to meeting an animal’s lipid requirement and 
the addition of fat to diets is largely driven by economics (cost 
per unit of energy; Southern et al. 2012). Concentrated lipid 
sources are restricted in feeds for ruminants because they 
can have an antimicrobial effect, be hydrolysed by rumen 
bacteria and provide little energy for microbial fermentation 
(Bauman et al. 2003). Lipid requirements for aquaculture 
species are comparatively more significant, encompassing 
a higher gross requirement for energy as well as more 
specific requirements for functional lipid classes such as 
cholesterol, intact phospholipid, and essential fatty acids 

(National Research Council 2011). These requirements vary 
between species and are briefly discussed below. 

For fish, cholesterol and phospholipids can each be 
produced in vivo; however, it is a metabolically expensive 
process and providing dietary sources assists in promoting 
growth (Hardy and Kaushik 2021). Prawns are not able to 
synthesise cholesterol and so it needs to be provided in feeds 
(Teshima and Kanazawa 1971). Prawns also benefit from dietary 
inclusion of phospholipids, despite having the capability to 
synthesise them (Coutteau et al. 1997). Live feed and 
ingredients derived from marine sources such as pelagic 
fish, krill, and microalgae are rich sources of cholesterol 
and phospholipids. Formulated feeds for fish and prawns 
are often supplemented with phospholipids (soy lecithin) 
and cholesterol (krill meal, fish oil, poultry oil) to ensure 
that requirements are met (National Research Council 2011). 

Long-chain poly unsaturated fatty acids (LC-PUFA) 
are of particular interest in fish nutrition, with some 
(i.e. docosahexaenoic acid, DHA, and arachidonic acid, 
ARA) being more physiologically relevant than others (i.e. 
eicosapentaenoic acid, EPA) in respect of growth, survival 
and stress resilience (Trushenski and Rombenso 2020). 
Dietary ARA was reported to be strategic to fish cultured at 
suboptimal temperatures (warmer and colder; Norambuena 
et al. 2016; Araújo et al. 2019; Araújo et al. 2021). This is 
of particular interest not only to the Tasmanian salmon 
industry faced with high summer seawater temperatures, 
but also to the broad Australian aquaculture industry as it 
faces the consequences of climate change. Regardless the 
fish species’ capacity to produce or not in vivo, dietary 
supplementation of these key LC-PUFA can benefit the 
production of higher trophic-level (more carnivorous) species 
(Trushenski and Rombenso 2020). 

Omega-3 fatty acids are important for the aquaculture 
industry as there are consumer expectations that many 
seafood products, such as salmon, contain high concentra-
tions of omega-3 for human health benefits. Strategies to 
maintain or enhance omega-3 content in fish fillets via dietary 
manipulations are well developed for mature industries 
such as salmon (Rombenso et al. 2022). These include the 
use of finishing diets with high fish oil concentrations, 
supplementation of omega-3 fatty acids and formulation 
strategies to promote an omega-3 LC-PUFA sparing effect. 
Industry adoption of these dietary strategies is predominantly 
driven by consumer expectations, and regulations and 
guidelines that may be associated with this, rather than as a 
dietary requirement of the fish. 

Carotenoid pigments such as astaxanthin are added to 
diets for both salmon and prawns to provide colour to flesh, 
skin, shells, and fins at levels to meet customer demands 
and preferences. In addition, carotenoids have been shown 
to be beneficial as antioxidants and immunomodulators 
(de Carvalho and Caramujo 2017). Sources of lipid influenced 
the absorption of algal carotenoids in salmon where canola oil 
facilitates a higher apparent digestibility of carotenoids than 
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does tallow (Courtot et al. 2022). Furthermore, algal 
carotenoids had significantly higher apparent digestibility 
than did synthetic astaxanthin. While this finding would 
align with an increasing consumer preference for the use of 
naturally derived feed additives in animal feeds, the cost of 
such naturally derived astaxanthin is substantially higher 
than that of the synthetic forms currently used by industry. 

ESG concerns

It is forecasted that there will be a reduced exportation of 
Australian-produced seafood due to the ongoing effects 
of the COVID-19 pandemic, rising production and freight 
costs and reduced export-market profile related to changing 
consumer behaviour and international relationship tensions 
(Curtotti et al. 2023). Thus, it is necessary to increase the 
domestic consumption of Australian seafood products to 
maintain a viable Australian aquaculture industry. Cost of 
seafood undoubtedly plays a role in consumer preferences. 
However, there is also a need to improve the public 
perception of Australian-produced seafood where there is 
an increasing spotlight on ESG challenges faced by the 
industry. We discuss the foremost challenges and possible 
new directions to safeguard the future of Australian aqua-
culture in the domestic market. 

Replacement of wild-caught fishmeal and fish oil

Fishmeal and fish oil (FMFO) are used extensively in 
aquaculture feed. They are often considered gold-standard 
ingredients as they meet the demand for many macronutrients 
and even unknown growth factors (Turchini et al. 2019). 
However, much of the FMFO has been sourced from wild-
caught fisheries. Although being well managed (Food and 
Agriculture Organization of the United Nations 2020), there 
is ongoing environmental and social pressure to divert use 
of wild-caught FMFO away from aquaculture as it is 
considered unsustainable, by some, to use wild-caught fish 
to produce ‘farmed fish’, measured as fish-in-fish-out ratios. 
Coupled with this has been an increase in cost of FMFO as 
demand has grown concurrent with the industry, while 
supply has reached a plateau. Together, these two factors 
are a strong driver for the industry to judiciously use 
FMFO and find alternative and complementary ingredients 
to satisfy the industry and social demands. 

Australia’s aquaculture industry is responding to these 
concerns. For example, feeds that are free of wild-caught 
FMFO are commercially available for prawns. For salmon, 
one of the main producers in Australia, Huon Aquaculture, 
has reportedly reduced the inclusion of FMFO by 20% to 
current levels of between 15% and 18% (Huon Aquaculture 
2021). However, complete replacement of wild-caught FMFO 
is not yet commercially feasible for carnivorous species such 
as salmon, as the cost of many alternatives with the required 

nutrient content remains prohibitive. Nonetheless, reliance 
on this resource is likely to reduce through time as social 
pressure on the industry increases, the resource itself becomes 
more expensive, and alternatives become cheaper. Some of 
these alternatives are discussed below. 

Alternatives to wild-caught FMFO

Seafood trimmings
Both fishmeal and fish oil can be generated from 

seafood processing waste, collectively known as trimmings. 
Trimmings can be ground and pressed/extruded to produce 
fishmeal and fish oil. Lesser-quality wastes may be rendered 
to produce hydrolysates to be used as feed attractants and 
as a source of amino acids (Howieson and Choo 2017; 
Siddik et al. 2021). The reuse of offal that would have 
otherwise been disposed as waste presents major circularity 
benefits for the aquaculture industry. However, greater 
opportunity is possible when trimmings from the fishing 
industry are also considered (FAIRR 2022). Large volumes 
of waste are generated in fishing trawlers and are usually 
pitched overboard. Trimmings (mainly heads and guts) can 
account for 37–50% of the weight of caught fish such as 
cod, haddock and tuna. Iceland, as an example, has improved 
their proportion of fish utilised post-catch by 30-fold since the 
1990s by generating co-products such as omega-3 oil, roe and 
fish leather (Archer and Jacklin 2022). However, in Australia, 
limitations to accessing this source relate to its stabilisation 
and storage on trawlers and then logistical challenges to 
transport this material for further processing (FAIRR 2022). 

Alternative sources of omega-3 fatty acids
The most desired component of fish oil is the omega-3 

content, particularly DHA and EPA. Fish are not efficient at 
producing omega-3 fatty acids. Instead, they bioaccumulate 
by consuming either microalgae or prey on fish that have in 
turn accumulated omega-3 fatty acids. 

Microalgae are receiving much attention as it is these 
organisms that are the original source of omega-3 oils 
(Tocher 2015). However, producing microalgae at scale is 
expensive and this has limited their use in the aquaculture 
industry. Furthermore, processing to extract the oil from 
the organism may be required, due to the poor digestibility 
of the rigid cell wall (Nagappan et al. 2021). Thraustochytrids 
are one organism grown to produce algal oil at commercial 
scale. BioMar has used thraustochytrid-sourced oil to produce 
over one million tonnes of aquaculture feeds globally since 
2016 (The Fish Site 2021) and Skretting is also using this 
product to replace fish oil in a FMFO-free feed range 
(Skretting 2023). However, while overseas companies have 
progressed with the use of algal oil, there has been little use 
in Australian manufactured fish feeds. 

Genetic engineering represents another possible solution 
to the need to produce omega-3 fatty acids more sustainably. 
Nuseed’s Omega-3 canola is the world’s first plant-based 
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source of DHA (Nuseed 2022) and was developed in 
collaboration with CSIRO and the Grains Research and 
Development Corporation (GRDC). Derived from its oil are 
Aquaterra® for aquaculture feeds and Nutriterra® for human 
nutrition. Use of Aquaterra® Omega-3 oil in aquaculture feeds 
has been shown to maintain growth in salmon, while also 
delivering favourable omega-3 concentrations in fish fillets 
at harvest (Nuseed 2022). However, to our knowledge the 
use of this product is not occurring in Australia, where 
its lack of use may relate to Tasmania, which is the main 
state for salmon production, having a GMO-free moratorium 
that precludes the use of GMO supplements in fish feed 
(Department of Primary Industries Parks Water and 
Environment 2019). 

Alternative sources of protein

Use of animal by-products
Animal by-products such as meat, bone and blood 

meal, and poultry by-products are major constituents of 
many aquaculture feeds (Colombo et al. 2022). Ingredients 
derived from animal carcasses have desirable nutrient 
profiles, because their content and bioavailability are 
comparable to fishmeal (Galkanda-Arachchige et al. 2020; 
Jia et al. 2022). Using these products can reduce reliance 
on wild-caught marine resources as well as reducing 
waste and improving circularity from the meat-processing 
industries. 

There are some risks associated with the use of animal by-
products in aquaculture feeds. One risk is the transmission 
of disease. This risk has prevented the use of animal 
by-products in the EU until recently (Jędrejek et al. 2016). 
However, the risk of disease transfer is generally con-
sidered low (Klinger and Naylor 2012). Another risk is 
that measures of sustainability of aquaculture feeds may 
be affected, as rendering of meat is energy intensive and 
so the carbon footprint of these products is typically 
higher than that of wild-caught seafood (Ramirez 2012; 
Ghamkhar and Hicks 2020). Finally, industries using 
animal by-products can become associated with consumer 
concerns relating to animal welfare. These issues may 
prevent greater adoption of the use of animal by-products 
in aquaculture feeds. 

In Australia, some community groups maintain a 
social argument against the use of animal by-products in 
aquaculture diets (Percival 2021). Some companies have 
responded to this by reducing the reliance of animal by-
products. For examples, Huon Aquaculture has reduced the 
use of animal by-product meal in the diets for salmon from 
40% in 2015 to 18% in 2020 (Huon Aquaculture 2021). 
Despite the social pressures, animal by-product meals 
remain readily available locally, are high-quality ingredients 
and the arguments for their use in terms of circular use of 
resources remains strong. 

Plant proteins
Ingredients that are rich in vegetable protein are attractive 

to the aquaculture nutritionist due to their low cost and high 
availability. Soybean meal has been most researched and 
utilised for aquaculture diets. It is a well known protein 
source for animal feeding, with a desirable nutritional 
profile (up to 48% crude protein and ~2.5% fat after 
lipid extraction; National Research Council 2011). Typical 
digestibility of soybean meal (solvent extracted) averages 
76% and 68% for crude protein and gross energy 
respectively, in salmon (Hajen et al. 1993), and 80% and 
46% crude protein and gross energy respectively, in prawns 
(Glencross et al. 2018), which is comparable to animal-
derived protein sources. Although soy meals and concen-
trates are useful ingredients to reduce the reliance on 
fishmeal, there are also caveats. Like most plant-based protein 
ingredients, these ingredients can contain anti-nutritional 
substances that can effect animal health and digestibility 
(Zhou et al. 2018b). In addition, soybean products can be 
expensive as a source of plant protein due to competing 
demand from livestock industries. There are also community 
concerns regarding the global impact of soybean farming on 
deforestation and carbon emissions (McFarlane and O’Connor 
2014). 

Australia has a wealth of other plant protein crops that may 
be increasingly used in the aquaculture industry. For example, 
Australia is the largest producer of lupins, accounting for 
85% of the world’s production. Lupins have high contents 
of protein and can be grown in nutrient deficient soils. 
Aquaculture species fed feeds based on lupins can grow as 
well and, at times, better, than when fed fish meal-based 
diets (Glencross 2001). Similarly, canola is the main oilseed 
grown in Australia and its high protein by-product, canola 
meal, possesses an amino acid profile comparable to soybean 
meal (Enami 2011). Other protein meals produced in 
Australia include sunflower, safflower, hemp and chickpea. 
Currently, these are all underutilised by aquaculture. 

Plant protein crops are being increasingly improved to 
better meet the needs of animal and aquafeed industries. 
For example, Australian canola breeding programs have 
successfully reduced glucosinolate content to trace amounts, 
with current research aiming to reduce fibre and increase 
protein content (Mailer et al. 2008). 

Fermented ingredients/microbial proteins
Yeast, bacteria and microalgae have been used for 

fermentation to achieve high biomass yields (Glencross 
et al. 2020; Sharif et al. 2021). Fermentation technology 
is particularly attractive for aquaculture because high-
carbohydrate substrates can be converted into high-protein 
microbial cells that contain a more desirable nutrient profile 
for feeding. Fermented ingredients are also associated 
with immune-modulatory properties where micro-organisms 
constituents (e.g. β-glucans, nucleotides) and their 

1892



www.publish.csiro.au/an Animal Production Science

co-products (e.g. organic acids) can improve immune 
resistance and digestive tract function of aquatic animals 
(Glencross et al. 2020; Woolley et al. 2023). 

Fermented ingredients, including single-cell proteins 
and fermented feedstuff, have potential as quality protein 
ingredients for aquaculture feeds (Glencross et al. 2020; 
Jones et al. 2020). Commercially available fermented ingredi-
ents can be incorporated into diets from 15% to 40% inclusion 
without any adverse effect on growth parameters for salmon 
and prawns (Aas et al. 2006; Øverland et al. 2013; Guo et al. 
2019; Jintasataporn et al. 2022). The impact of fermented 
ingredients of carbon and environment is dependent on the 
product. Fermentation can be used to upcycle food and 
agriculture waste so that nutrients can be rescued from 
landfill (Dou et al. 2018). 

Insects
Insect protein has attracted significant investment as it 

promises to be a sustainable (low carbon-emitting and 
land-use) protein source for humans and animals. 
However, as a replacement to fishmeal, insect meal is not 
necessarily more sustainable. Production of insect meal 
can have greater carbon emissions, electricity use and 
nitrogen  waste than have other  protein sources, including 
fishmeal and single-cell protein (Quang Tran et al. 2022). 
However, it is likely that the industry will evolve to 
address these concerns. For example, one company, 
Ÿnsect, claims that cultivating mealworms in vertical farm 
uses 98% less land while having a lower carbon and 
biodiversity footprint than for traditional animal protein 
meals (Hogan 2021). These trends towards more sustainable 
insect rearing are likely to continue and increase the 
viability of these products for aquaculture nutrition 
applications. 

Insects are a natural diet for many aquaculture species, 
which gives insect meal a nutritive advantage over 
many other terrestrial-derived meals. A caveat is that 
insect meals containing high levels of chitin can reduce 
digestibility. However, the literature assessing insect meals 
in aquaculture feeds continues to expand, showing benefits 
in growth and immunity for many aquaculture species, with 
some insects such as black soldier fly larvae exhibiting 
bioactive properties (Freccia et al. 2020; Rombenso et al. 
2023). This growing literature is vital to building industry 
confidence on the reliability of commercial insect meals 
for aquaculture. 

The main hurdles for greater adoption of insect meal in 
the aquaculture industry is the limited volumes currently 
produced, inconsistencies in composition and high prices 
(higher than for fishmeal). To enable greater expansion of 
the sector, insect production companies are seeking links 
with aquaculture feed producers to fuel the growth plans of 
the sector (Fletcher 2021). 

Nutrient discharge

Nutrient discharge from aquaculture production poses a 
significant ESG risk for the acceptance of aquaculture in 
Australia (Verdegem 2013). Nutritionist can play a role in 
reducing nutrient discharge by ensuring that feeds are well 
formulated to reduce leaching, to have high digestibility, 
and to ensure that feeding regimes meet the metabolic and 
growth requirements of the animal. 

Leaching of diets can account for a significant loss of 
nutrients, particularly highly soluble amino acids. For 
example, prawn diets have been shown to lose 20% of 
crystalline methionine after 10 min and 50% loss after 2 h 
immersion in water (Simon et al. 2021). Diets can be manu-
factured to improve stability in water. The use of functional 
ingredients such as diet binders, and starches that gelatinise 
and entrap water-soluble ingredients, can improve diet 
stability (Dominy et al. 2004; Paolucci et al. 2012). However, 
overuse of these ingredients may reduce the attractiveness of 
the diet to the animal, palatability, and digestibility. Thus, a 
compromise between diet stability and nutrient bioavail-
ability needs to be achieved. 

Improving the digestibility of diets can reduce nutrient 
discharge by reducing both the amount of feed needed to 
produce a harvest and the amount of nutrients lost through 
faeces. Digestibility can be improved by judicious selection 
of ingredients that match the biology of the species in 
culture. In addition, additives can be incorporated into diets 
to facilitate gut function and digestibility. Some examples 
include amino acids, fatty acids, algae extracts, bacteria 
mixes and organic acids (Lara-Flores et al. 2010; Magouz 
et al. 2020; Tharaka et al. 2020; Li et al. 2021; Khorshidi 
et al. 2022). 

Improving nutrient retention can also assist to reduce 
nutrition discharge from aquaculture. Nutrient retention 
efficiency is an indicator of the proportion of nutrients 
retained by an animal in anabolic processes (growth) 
versus how much is lost in faeces (not digested) and urea 
(catabolised). Protein retention efficiency of shrimp is 
~10–25% (Truong et al. 2022b), while fish can achieve two to 
three times this, such as, for example, 36% in barramundi 
(Simon et al. 2019). However, these protein retention 
efficiencies are low compared with those for poultry, which 
range from ~25% up to 80% (Gous et al. 2018). Nutrient 
retention-efficiency gains achieved in poultry are predomi-
nately attributed to genetic improvement (McKay 2009). 
Unfortunately, this strategy is not easily achievable in 
aquaculture, due to the challenges in measuring individual 
feed intake. As such, dietary approaches remain the most 
likely means of improving nutrient retention efficiency in 
the short term. This has been observed in P. monodon 
prawns through the addition of microbial biomass, which 
acts to improve the absorption of amino acids into the 
haemolymph (Truong et al. 2021) and more than doubles 
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the protein retention efficiency compared with a control diet 
(10.9 vs 22.6%; Simon et al. 2020). 

Precision feeding can be used to ensure that the provision 
of feed is adequate to sustain growth but is not wasteful. 
Technologies such as acoustic feeders, which can detect 
when prawns are feeding, can better align feed delivery 
with prawn appetite (Ullman et al. 2019). In Australia, this 
technology has resulted in up to 20% improvement in 
feeding efficiency (M. Goodey, Tassal, Australia, pers. 
comm., 27 June 2022). Video technologies to observe how 
fish are consuming feed are also used for this purpose in 
the salmon industry (Ang and Petrell 1997). 

Carbon footprint

The carbon footprint of producing aquaculture feeds is high 
and accounts for much of the carbon footprint to produce 
farmed seafood. For example, a recent report indicated that 
for salmon farming, feed accounts for 80% of all greenhouse-
gas emissions from farming when Scope 3 emissions 
(emissions in which activities are indirectly responsible, up 
and down its value chain) are considered (FAIRR 2022). 
This includes feed production, ingredient, and feed transport 
to and from feed mills, and downstream transport of finished 
products. This scenario would also hold for most of the fed 
aquaculture businesses in Australia, including barramundi 
and prawns. 

Producing aquaculture feeds with a lower carbon footprint 
will be a challenge for industry. It will involve sourcing 
ingredients from suppliers with lower carbon footprints, 
minimising emissions in feed production, and decreasing 
the distance between feed mills and farmers. Overseas 
companies are leading the way, with the development of 
carbon-neutral or low-carbon aquaculture feeds. Major feed 
producers are utilising low carbon-producing ingredients, 
maximising productivity (so that less feed is required to 
rear fish) and carbon offsetting to produce a low-carbon 
feed range (The Fish Site 2020; Hogan 2021). 

Aquaculture will need to adopt a whole-of-system approach 
to reduce carbon emissions. Carbon footprint calculators are 
being used to assist with the adoption of practices with 
reduced carbon emissions, including transport. For example, 
Danish Salmon producer Hiddenfjord has eliminated all 
air freight by switching to sea freight. This has reduced 
transport CO2 emissions by 94% (Hogan 2021). 

Conclusions

Australian aquaculture nutrition is facing new challenges not 
imagined by previous generations. Not only do formulations 
have to meet the rigid nutrient requirements of the high-
trophic species cultured, but they will also have to adhere 
to increasing expectations of seafood quality, animal health 
and welfare, and environmental sustainability. The shift 

away from fishmeal and fish oil has resulted in more 
complex formulations utilising a greater array of ingredients 
and feed additives. Companies producing alternative ingre-
dients are aligning with major feed producers to acquire 
the necessary industry conviction to increase production 
volumes and be more cost competitive. In turn, feed 
producers are acquiring ingredients from trusted suppliers 
who can provide full traceability of their products. These 
actions are all in the efforts to gain social licences to 
operate and meet the increasing consumer expectation for 
responsible and sustainable farming. 

The Australian aquaculture industry is facing increasing 
pressure to ensure that these products have ESG acceptance. 
Whether driven by government regulations or consumer 
expectations, the onus of environmentally conscious produc-
tion of food has fallen on the producers themselves. Criticism 
of any animal production industry will taint the reputation of 
all animal production industries and so, we are seeing an 
increasingly consolidated effort to adopt sustainable practices 
throughout the production value chain. Aquaculture nutrition 
will play a key role in delivering ESG goals for the Australian 
industry. 
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