
CSIRO PUBLISHING

www.publish.csiro.au/journals/pasa Publications of the Astronomical Society of Australia, 2007, 24, 13–20

Large Catalogue Query Performance in Relational Databases

Robert A. PowerA

A CSIRO ICT Centre, Canberra ACT 2601, Australia. Email: robert.power@csiro.au

Received 2006 November 24, accepted 2007 February 19

Abstract: The performance of the mysql and oracle database systems have been compared for a selection of
astronomy queries using large catalogues of up to a billion objects. The queries tested are those expected from
the astronomy community: general database queries, cone searches, neighbour finding and cross matching.
The catalogue preparation, sql query formulation and database performance is presented. Most of the general
queries perform adequately when appropriate indexes are present in the database. Each system performs well
for cone search queries when the Hierarchical Triangular Mesh spatial index is used. Neighbour finding and
cross matching are not well supported in a database environment when compared to software specifically
developed to solve these problems.

Keywords: astronomical data bases: miscellaneous — catalogs — surveys

1 Introduction

An astronomy catalogue lists a collection of objects and
their features, for example location, magnitude and colour.
All sky catalogues have been constructed from systematic
surveys of the night sky where one or more telescopes are
dedicated to perform repeated observations. During this
process, the same patch of sky will be observed multiple
times and a catalogue constructed by merging data.

This paper reports an investigation comparing the per-
formance of two popular database systems, mysql and
oracle, using sql queries on catalogues consisting of
approximately a billion objects. This is the size expected
of the catalogue generated from the Stromlo Southern
Sky Survey (S4) using the SkyMapper telescope currently
under construction1. Catalogues of this size currently
exist and benchmarking tests have been carried out on
a selection of these as well.

The investigation shows that large catalogues can be
handled effectively with a modest computing environ-
ment. It is advisable, however, to be aware of specific
deployment and implementation options available with
each of the database systems adopted.

The paper starts with a review of related work before
describing the computing environment and catalogues
used. The first tests are a selection of typical queries
expected by the astronomy community. This is followed
by cone search queries, which highlight the need for a spa-
tial index to improve query performance. The task of find-
ing neighbours within a catalogue is then detailed along
with the related operation of catalogue cross matching. A
summary and discussion of the results concludes the paper.

An extended version of this investigation is available
as a CSIRO ICT Centre Technical Report (Power 2006).

1 www.mso.anu.edu.au/skymapper/

2 Related Work

The performance of general catalogue queries is covered
in Gray et al. (2002) where they detail the implementation
of twenty queries for the Sloan Digital Sky Survey (SDSS)
(Szalay et al. 2000) using the Microsoft sql server
database. These tests were however conducted on a dataset
much smaller, 14 million rows. Their results cannot be
directly compared with those reported here since every
aspect is different: hardware, software and data.

The Hierarchical Triangular Mesh (HTM) spatial index
(Kunszt et al. 2000) can be used to efficiently perform cone
search and other location based queries. While there are
other spatial indexing schemes for astronomy datasets,2

detailed performance comparisons have not been reported.
Modern database systems provide support for data

types other than numbers and strings. The type system of
a database may be extensible allowing new user defined
types and operations to be introduced. All the major
database vendors support spatial data types in some form
or other with standardisation efforts evolving3. The user
base for these activities is from the Geographical Informa-
tion Systems community which uses Earth based datasets.
The coordinate systems are spheroidal rather than spher-
ical, making it inefficient to measure distances when the
data points use a spherical polar coordinate system. There
are no known attempts to utilise these capabilities with
astronomy datasets.

Neighbour finding is addressed in the field of com-
putational geometry where optimal solutions use tech-
niques that assume a complex data structure, for example
the Voronoi tessellation or the Delaunay triangulation
(Preparata 1985). These structures are computationally
expensive to establish and the algorithms would need to be

2 www.star.le.ac.uk/∼cgp/ag/skyindex.html
3 www.opengeospatial.org/

© Astronomical Society of Australia 2007 10.1071/AS06026 1323-3580/07/01013



14 R. A. Power

modified to work in a spherical polar coordinate system.
The adaptation of these algorithms and structures for use
in the astronomy domain remains untested.

The work of Gray et al. (2004) describes an approach
to finding neighbours in sql that uses declination par-
titions termed zones. Each object is uniquely associated
with a zone: neighbours are first determined within a
zone and, only when necessary, neighbours between zones
evaluated. This approach reduces the search space for an
individual object to a more manageable size, but within
zones it uses a nested loop approach where each object is
compared with all others to find neighbours.

openskyquery4 allows astronomy catalogues to be
cross matched. For example, a personal catalogue of
objects can be used for cross matching against a selected
database. The algorithm used is the foundation for a
distributed query engine allowing catalogues at differ-
ent locations to be merged using a likelihood analysis to
determine if objects match or not. Cross matching perfor-
mance using openskyquery for large catalogues is not
documented.

3 Environment

A brief description of the computing environment and the
catalogues used is presented below.

3.1 Computing

The machine used for benchmarking was a Dell Power
Edge 2650 server with dual Pentium Xeon 2 GHz CPUs,
2 GB main memory and 6 TB disk. The maximum transfer
rate between the disk and the server is 160 Mbytes/sec. The
operating system is Debian Linux 2.6.8.

The database systems used are mysql 5.0 Community
Edition, Generally Available (GA) Release5 and oracle
10.2.06. The databases were installed ‘out of the box’. The
table and column names were kept identical so the same
sql query syntax could be used interchangeably for each
database. All tests are measured in terms of elapsed time,
the total time taken to complete the test as reported by the
computer’s internal clock.

The benchmarking tests were performed using the same
Java application for both databases. All tests are per-
formed on a ‘cold’ database, one that has just been shut
down and restarted and the operating system’s disk cache
flushed. The neighbour finding and cross matching code
is implemented in c++.

3.2 Catalogues

The original purpose of benchmarking was to profile the
expected database performance using a large synthetic cat-
alogue constructed to simulate the characteristics expected
from SkyMapper. Code to generate a realistic stellar S4
dataset was provided (P. Francis 2004, private communi-
cation) for this purpose. Large non-synthetic astronomy

4 openskyquery.net/Sky/skysite/
5 www.mysql.com
6 www.oracle.com

Table 1. Catalogue summary

Catalogue Size # recs
(GB) (106)

S4 91 819
USNO B1 78 1045
2MASS 147 471
SSA 261 1071

catalogues are also available and a small selection were
also tested. These extra datasets provide a comparison of
the synthetic dataset with realistic ones. They also allow
the catalogue cross matching operation to be investigated.

A brief description of each catalogue follows with a
summary in Table 1.

3.2.1 S4

The synthetic S4 dataset simulates a stellar population
that is realistic in its magnitude and sky distribution for
the southern hemisphere. The randomly generated mag-
nitudes adopt an extension of the UGRIZ system used in
the SDSS and is described at the SkyMapper homepage1.

3.2.2 USNO B1

The US Naval Observatory (USNO) has published a
series of catalogues all based on digitising photographic
plates. The B1.0 (Monet et al. 2003) is the latest, referred to
as USNO B1 in this paper, and contains over one billion
objects compiled from 7435 Schmidt plates, describing
their position, proper motion and magnitudes in various
optical passbands.

Each record in the catalogue is derived from up to five
surveys and each survey includes a star/galaxy estimator
flag. The original focus of this report was to investigate
stellar datasets, so it was considered to extract the stellar
records. Using the star/galaxy estimator, if only one flag
is set to indicate the record is a star, then there are around
615 million stars, approximately 60% of the dataset. If
all flags are required to agree that a record is stellar, then
roughly 21 million (2%) are found.

The benchmarking reported here concerns database
performance, not science astronomy results, and so the
whole dataset was loaded and issues of identifying stellar
records not considered further.

3.2.3 2MASS

The Two Micron All Sky Survey (2MASS) (Skrutskie
et al. 2006) contains point and extended source catalogues
of the near infra-red sky. The point source catalogue con-
tains positions and uniformly calibrated photometry of
nearly 500 million point sources while the extended source
catalogue consists of over 1.5 million spatially extended
sources, mainly galaxies.

Only the point source catalogue has been investigated
here.



Large Catalogue Query Performance in Relational Databases 15

Table 2. Query performance (mm:ss)

Query # recs mysql oracle

1. R mag 733 846 916 19:43 4:25
2. R mag 108 446 0:01 0:03
3. UGRIZ mag 32 954 9:01 0:25
4. 1 colour cut 19 635 062 0:32 0:09
5. 4 colour cut 47 0:37 0:51
6. White dwarf 19 411 077 3081:10 16:25
7. Quasar 0 9:59 10:04
8. Rare colours 205 116:32 41:53
9. Rare colours 91 98:41 35:46

10. Cone colour 822 3:13 1:19
11. HTM group 262 145 108:07 86:25
12. Neighbours 557 0:33 0:28
13. Binaries 20 687 10:44 9:51
14. Gravit. lens 1 172 336 1171:09 491:37

3.2.4 SSA

The SuperCOSMOS Science Archive (SSA) (Hambly
et al. 2001) comprises data extracted from scans of pho-
tographic Schmidt survey plates, similar to the USNO
catalogues. The resulting object detections form a cata-
logue of over one billion records covering the southern
celestial hemisphere.

A copy of the SSA Source Table consisting of stellar
and galaxy data was obtained from the Royal Observa-
tory of Edinburgh. As mentioned for USNO B1, the entire
dataset was loaded and issues of identifying stellar objects
ignored.

4 Catalogue Queries

Database performance was initially assessed using exam-
ples motivated from the SDSS and SSA. Only the S4 was
tested since this corresponds to the size and content of
a catalogue expected from SkyMapper, the focus of this
investigation. Appendix A contains a brief description of
the queries with a complete listing available in Power
(2006).

The query performance is shown in Table 2. Note that
database indexes have been created on the appropriate
table columns to ensure efficient query processing.

The first two queries are the same except for the tested R
magnitude value, resulting in more records found which
significantly increases its elapsed time. The third query
includes extra magnitude conditions to check, reducing
the number of records found, but requires more work by
the database.

Queries 4 and 5 use magnitude differences, a ‘colour
cut’, and are efficiently performed by each database.

The performance of the search for white dwarf stars
was a surprise. It is a simple variation from the previous
query, but was the worst for mysql and one of the slowest
for oracle.

The quasar query involves a complicated stellar model
and contains the most complicated sql where clause
tested.

select id, ra, de
from s4_sub
where acos(sin(radians(-15.137))*

sin(radians(de)) +
cos(radians(-15.137))*
cos(radians(de))*
cos(radians(134.154 - ra)))

<= radians(0.25)

Figure 1 Cone search sql.

The next four queries, 8–11, test aggregation using the
sql group by clause. These are slow queries but when a
cone search region is included (Query 10) the spatial index
makes the query faster.

The last three queries are examples of self-joins to find
neighbours. Queries 12 and 13 target close objects by test-
ing a small angular separation and are able to find a result
within an acceptable time. The same can not be said for
Query 14 where it takes over eight hours to complete for
oracle and nearly 20 hours for mysql.

In summary, oracle is significantly faster (by a fac-
tor of 3) than mysql for half the queries, and about
the same for the remainder. All the queries were per-
formed adequately by each database, other than the last (a
time-consuming join operation) and Query 6 for mysql.

5 Location Queries

The next set of tests were cone searches, a location query
defined as: find all the objects within a certain radius of a
given location on the celestial sphere.

5.1 Cone Search

A cone search query is performed by calculating the great
circle distance from the cone centre to each target object
and testing if this distance is within the required radius.An
example sql query that uses the spherical law of cosines to
find the records within a 0.25-degree radius of the location
134.154, −15.137 in degrees is shown in Figure 1.

This query uses the s4_sub table, an S4 subset of
approximately 74 million records used to check the queries
before running them on the full S4 table. In all 9309 match-
ing records are found and it takes just under three minutes
for mysql and 9 and a half hours with oracle. This large
disparity in elapsed time is due to oracle being very slow
when using trigonometric functions and the use of a user
defined radians function, a provided function in mysql,
but not oracle.

An efficient cone search requires indexing.

5.2 Spatial Indexing

There are numerous indexing schemes to support spatial
data, see Gaede & Gunther (1998) for a survey. The Hierar-
chical Triangular Mesh (HTM) spatial index (Kunszt et al.
2000) uses area decomposition. The celestial sphere is
initially divided into eight spherical triangles: four for the
north and four south. Each triangle is then divided into four
and the process repeated recursively to a predetermined



16 R. A. Power

depth. The triangles are numbered with the aim of preserv-
ing spatial proximity: areas close spatially are labeled with
numbers that are also numerically close. The labels are
mapped to a base-10 integer value termed the ‘HTM id’.

The HTM source distribution includes sql server spe-
cific functions as stored procedures (non standard sql
extensions) to efficiently use the HTM spatial index. For
example, the fGetNearbyObjEq function implements cone
search.

In order to use the HTM spatial index, one solu-
tion would be to port the stored procedure code to each
database system. This was not pursued because, apart from
not wanting to port the code twice, the version of mysql
originally used in this investigation did not support stored
procedures. While the current version of mysql does,
the decision had been taken early on that HTM support
could be manifested externally to the database system by
modifying the sql queries as explained below. This has
the advantage that databases which don’t support stored
procedures can be included in the assessment.

The functionality of the HTM spatial index can be used
without stored procedures. Using the same cone search
example from Figure 1, a 0.25 degree radius around the
location 134.154, −15.137, an area on the celestial sphere
encompassing the cone region is specified in terms of
HTM id’s by the condition:

htmId between 10853734678528
and 10853785010175 or

htmId between 10853852119040
and 10853868896255 or

htmId between 10853885673472
and 10853919227903

This query fragment is evaluated by the function fGet-
NearbyObjEq. By modifying a user query to include the
above where clause fragment, the benefit of the HTM spa-
tial index can be utilised without requiring extensions to
standard sql.

In summary, a cone search query can be efficiently
implemented in a database by generating a single HTM
id for each point object location, creating an index on the
HTM id column and generating queries that use HTM
ranges in the sql where clause.

5.3 Performance

Power (2006) reports twelve sql query versions that per-
form a cone search using HTM id’s in conjunction with
various cone search expressions. For example using a
haversine (Sinnott 1984), normalised Cartesian coordi-
nates or the expression used in Figure 1. For each sql
query version, 500 random RA and Dec locations are gen-
erated and eight different cone search radii are used: 5, 15,
30 and 60 arcsec; then 5, 15, 30 and 60 arcmin. In all, over
40 000 queries are tested for each database.

Since the queries are placed randomly over the southern
hemisphere, differing numbers of records are found, but
the same cone search should find the same records regard-
less of which of the twelve query versions is used. This was

select id, ra, de
from s4
where (htmId between 10853734678528

and 10853785010175 or
htmId between 10853852119040

and 10853868896255 or
htmId between 10853885673472

and 10853919227903)
and ra >= 133.8950142240700245
and ra <= 134.4129857759299682
and de >= -15.387
and de <= -14.887
and x * -0.6724205844444091 +

y * 0.6925768998123125 +
z * -0.2611279293024881

>= 0.9999904807207345

Figure 2 Fastest-cone search.

Table 3. Cone search, radius 5 arcmin

Catalogue Average mysql oracle
records (sec) (sec)

S4 901 0.408 0.203
USNO B1 725 0.659 0.245
2MASS 309 0.323 0.179
SSA 1152 7.708 2.498

true for oracle, but not always for mysql. This is believed
to be due to issues of precision in floating point arithmetic
or the implementation of trigonometric functions.

The consistently best performing query version was
to use normalised Cartesian coordinates and include the
cone’s Minimum Bounding Rectangle (MBR) as well
as the HTM id’s. This is necessary in oracle in order
to achieve acceptable query response times (avoiding
trigonometric functions) and is advisable in mysql since
it produces consistent results.

An example of such a query is shown in Figure 2, the
same cone search as Figure 1, but expressed differently
in sql. Note the successive refinement in the query. The
HTM id’s are used as a coarse filter, then the MBR of
the cone used as a further refinement before using the dot
product between the two normalised Cartesian coordinates
to test against the cosine of the cone search radius. There
are no trigometric or radian functions used in the sql, all
expressions are pre-computed when generating the query.

Table 3 reports the average elapsed times for each
catalogue using a search radius of 5 arcmin. oracle
consistently performs two to three times faster than mysql.

5.4 Sorting

Database query performance can be improved by sequenc-
ing the table data in the same order as the index. This
allows the table data to be accessed sequentially, improv-
ing disk I/O. When the index is on the htmId column then
this also groups spatially close objects nearby on disk.
For example, given a sql query with the following where
clause:

htmId between 10853734678528
and 10853785010175



Large Catalogue Query Performance in Relational Databases 17

Table 4. HTM sorted data radius 5 arcmin (sec)

Catalogue mysql oracle

S4 0.142 0.195
USNO B1 0.259 0.193
2MASS 0.108 0.134
SSA 0.218 0.484

select a.id, b.id
from s4 a, s4 b
where a.id != b.id
and a.x * b.x +

a.y * b.y +
a.z * b.z

>= cos(radians(15/3600))

Figure 3 sql neighbour finding.

The index on the htmId column is used to find the disk
references for the corresponding table data. If the table
and index records are stored in ascending order of HTM
id, then the table data will be read from disk sequentially,
making better use of disk reads.

The effect of re-sequencing the data was tested by sort-
ing each dataset by the htmId values before loading into
the database and repeating the cone search queries. The
results for each catalogue when using a cone search radius
of 5 arcmin is shown in Table 4, the same tests as reported
earlier in Table 3.

The improvement is dramatic for mysql, around three
times faster than the original queries. There is only a small
speedup for oracle, apart from the SSA result, and now
both systems have similar performance.

6 Finding Neighbours

The next problem tested was neighbour finding: for each
object in the catalogue, find the neighbours within a
specified angular distance occurring in the same catalogue.

Various approaches to identifying neighbours were
performed on a subset of the synthetic dataset. These vari-
ations are explained in Sections 6.1 and 6.2. The best
approach of those tested is to use software to generate
a list of neighbours, recording for each pair their record
ids and angular separation, then loading the result into the
database. This is the approach used in the SuperCOSMOS
and SDSS archives.

6.1 SQL

Finding the nearest neighbours for all objects within a cat-
alogue can be achieved using standard sql. The query in
Figure 3 finds all pairs of records in S4 within 15 arcsec
of each other using an expression involving normalised
Cartesian coordinates to determine the angular separa-
tion between points. Note the record ids are tested (!=)
to ensure the same record is not matched with itself.

Six sql variations of this neighbour finding query were
tested in both databases on an S4 data subset with less

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 10 20 30 40 50 60

E
la

ps
ed

 ti
m

e 
(m

in
)

Angular separation (arcsec)

usnob1
2mass

sss
ssa

Figure 4 Neighbour-finding times.

0
5

10
15
20
25
30
35
40
45
50

 0 10 20 30 40 50 60
N

um
 m

at
ch

es
 (

bi
lli

on
s)

Angular separation (arcsec)

usnob1
2mass

sss
ssa

Figure 5 Neighbour-finding records.

than 100 000 records. The fastest query took an hour to
complete and the slowest more than four.

6.2 Plane Sweep

A plane sweep solution was implemented next. This is an
algorithmic technique used extensively in computational
geometry to solve problems in two dimensional datasets.
The data is first sorted in one dimension then an imagi-
nary line is ‘swept’ along the sorted dimension and points
processed as they are encountered.

The standard algorithm has been adapted for astronomy
catalogues by accommodating the spherical geometry as
described in Devereux et al. (2005). Notably:

• care must be taken at the poles;
• the sweep line distance requires cos(Dec) corrections;
• RA wrap around must be considered.

The implementation in a database can not be performed
using standard sql: procedural language extensions are
required. This was only done for oracle, with a full
description provided in Power (2006).

This solution improves performance from over an hour
using the standard sql solution of Section 6.1 to 6.5 min
but is still much slower, by orders of magnitude, when
compared to a c++ implementation that generates the
same results in less than 10 sec.

This code has been adopted by the Royal Observatory
Edinburgh where they use it to generate lists of neighbours.
Their previous implementation took 48 hours to process
a billion rows of data whereas now it takes five hours
(R. Collins 2005, private communication).



18 R. A. Power

6.3 Performance

Figures 4 and 5 show the performance of the c++ imple-
mentation (Devereux et al. 2005) of the plane sweep neigh-
bour finding algorithm for each catalogue using angular
separations ranging from 1 to 60 arcsec. The results of
Figure 4 do not include the time to write the result to disk:
the tests simply count the number of matching records.

Note that the USNO B1 and SSA tables both have
around one billion objects, but SSA takes longer to pro-
cess. This is because the SSA data is spatially denser than
the USNO B1: the SSA table only covers the southern
hemisphere whereas the USNO B1 covers the entire celes-
tial sphere. The impact is that more neighbours will be
found for SSA which requires more data processing as
the sweep line encounters points in the sorted dataset.

The plane sweep algorithm to find neighbours requires
the catalogue to be sorted in ascending sequence of Dec.
Only the object location (RA and Dec) and unique identi-
fier are required. The location is needed since it is used to
determine proximity to other objects, while the id is used
to record the result.

The results reported in Figure 4 do not include the time
to sort the data by Dec. This pre-processing is accom-
plished by extracting the requisite information then sorting
using specifically written software and takes between 1:30
and 2:15 hours to complete for each of the four catalogues
tested.

7 Cross Matching

Cross matching is similar to finding neighbours, except
now there are two datasets. The task is: given two cata-
logues, for each object in one, find the objects in the other
that are within a specified angular separation.

The algorithm reported in Devereux et al. (2005)
requires location error information to establish a statisti-
cal measure of the likelihood that two objects match. The
matching reported here used the same software, modified
to test a fixed radius, reporting all objects within the circle
that match from the other catalogue.

7.1 Performance

The cross matching tests are performed as a pair wise
comparison of the four test catalogues, each prepared by
extracting the spatial description along with their unique
identifier and sorted as done for neighbour finding (the
same input files used for neighbour finding are used for
cross matching). Table 5 summaries the elapsed time in
hours for cross matching the various catalogues while
Table 6 shows the number of records found, in billions.
These tests include the time taken to write the results
to disk.

sql solutions were not attempted given the previous
poor performance for neighbour finding and the similarity
in algorithm.

These results show that the cross matching algorithm is
more efficient when the smaller catalogue is used against
a larger one. For example, it takes 4:38 to match 2MASS

Table 5. Cross-matching times (hh:mm)

Catalogues S4 USNO 2MASS SSA

S4 8:24 7:04 4:59 8:52
USNO 6:19 9:37 6:32 8:10
2MASS 3:56 5:15 3:14 4:38
SSA 8:43 8:51 6:02 11:19

Table 6. Cross-matching records (109)

Catalogues S4 USNO 2MASS SSA

S4 4.42 2.57 1.43 3.88
USNO 2.57 4.94 2.07 4.38
2MASS 1.43 2.07 1.51 2.05
SSA 3.88 4.38 2.05 7.08

against SSA and 6:02 to match SSA against 2MASS. This
is due to the processing performed when the sweep line
encounters a point and relates to the density of the cata-
logue in the dimension in which the dataset is processed.

When catalogues of similar size are cross matched
using the Devereux et al. (2005) algorithm the dataset with
lower spatial density should be used ‘first’. For example,
matching USNO B1 against the SSA takes 8 hours 10 min-
utes whereas doing it in reverse takes 8 hours 51 minutes.

8 Discussion

One of the underlying assumptions not addressed here is
that a database is the right environment for publishing a
large catalogue such as the S4. The justification extends
beyond astronomy specific issues and relates to the ease of
data access available through the sql query language. An
alternative would be to develop software in c or fortran
to process the data with the aid of libraries for efficiently
accessing astronomy datasets, such as wcstools7. How-
ever, the expressive power and simplicity of sql can not
be equalled in such a design.

A relational database provides a simple means of
accessing astronomy catalogues. Important operations
allowing data selection are feasible, making thorough
exploration of the data to be achieved.

This report profiles queries for large catalogues resid-
ing in the mysql and oracle database systems. The tests
were a selection of typical queries expected by users from
the astronomy community, cone search, neighbour finding
and cross matching. Most queries, other than neighbour
finding and cross matching, were handled adequately by
each database system.

oracle was consistently faster than, or the same as,
mysql for the general queries tested on the S4 table. Cone
search is well supported using the HTM as a spatial index
in conjunction with an MBR constraint. oracle was orig-
inally between two and three times faster than mysql for

7 tdc-www.harvard.edu/wcstools/



Large Catalogue Query Performance in Relational Databases 19

cone search queries. However, sorting the catalogues as
a pre-processing step before database loading improves
query response times for cone search, dramatically for
mysql, such that the databases now report similar query
response times as each other.

Neighbour finding for a catalogue of a billion objects
can be achieved in around 6.5 hours: 2 hours prepara-
tion (extract location and record id, then sort by Dec) and
around 4.5 hours to find the neighbours, depending on the
target angular separation required. Similarly, cross match-
ing two catalogues consisting of a billion objects can be
achieved in around 12 hours: under 4 hours to prepare
the two catalogues and just over 8 hours to do the match-
ing itself. These two operations are not well supported
for large catalogues in a database environment when only
using sql.

There are further avenues that could be explored. Par-
allelism of neighbour finding and cross matching using
the zone approach from Gray et al. (2004) could yield
improvements to the plane sweep algorithm. oracle sup-
ports parallelism using partitioning, where a single table is
distributed across file systems in a way understood by the
query optimiser. Query execution can then be distributed
across file systems utilising multi-processor machines, as
it is completely transparent from the user perspective.
mysql can be installed on a loosely coupled computing
cluster as a means of managing scalability.

The tests reported here define a baseline performance;
there could be optimisations available that would improve
response times. Databases are complex systems and opti-
mal performance is often only achieved after careful
tuning of the disk used, operating system configura-
tion, database specific parameters and sometimes the sql
queries themselves. The results presented here have been
achieved with minimal attention to these aspects.

Acknowledgements

This work would not have been possible without access
to large astronomy catalogues. Thanks go to David Monet

and his colleagues at the USNO for providing a copy of
the USNO B1 catalogue; Nigel Hambly and Bob Mann
for access to the SuperCOSMOS data; Paul Francis for
the script to generate a realistic S4 synthetic catalogue;
and to the 2MASS team for responding to an email with
a set of five double-sided DVDs.

Thanks also to CSIRO staff DaveAbel, Drew Devereux
and Peter Lamb for the original work on neighbour finding
and cross matching.

This investigation was undertaken as partial fulfillment
of the requirements for the Graduate Diploma in Science
at the Australian National University supervised by Dr.
Paul Francis.

References

Devereux, D., Abel, D. J., Power, R. A. & Lamb, P. R.,
2005, ASP Conf. Ser. 347, ADASS XIV, Eds. Shopbell, P.,
Britton, M. & Ebert, R. (San Francisco: Astronomical Society
of the Pacific), 346

Gaede, V. & Gunther, O., 1998, ACM Computing Surveys Volume
30 Number 2, 170

Gray, J., Slutz, D., Szalay, A. S., Thakar, I. A., vandenBerg, J.,
Kunszt, P. Z. & Stoughton, C., 2002, Microsoft Technical Report
MSR-TR-2001-01

Gray, J., Szalay, A. S., Thakar, A., Fekete, G., O’Mullane, W.,
Heber, A. & Rots, A., 2004, Microsoft Technical Report MSR-
TR-2004-32

Hambly, N. C., et al., 2001, MNRAS, 326, 1279
Kunszt, P. Z., Szalay, A. S., Csabai, I. & Thakar, A. R., 2000, ASP

Conf. Ser. 216, ADASS IX, Eds. Manset, N., Veillet, C. & Crab-
tree, D. (San Francisco:Astronomical Society of the Pacific), 141

Monet, D. G., et al., 2003, AJ, 125, 984
Power, R. A., 2006, CSIRO ICT Centre TR 06/209
Preparata, F. & Shamos, M., 1985, Computational Geometry an

Introduction (NY: Springer)
Skrutskie, M. F., et al., 2006, AJ, 131, 1163
Sinnott, R. W., 1984, S&T, 68(2), 159
Szalay, A. S., Gray, J., Thakar, A., Kunszt, P. Z., Malik, T.,

Raddick, J., Stoughton, C. & vandenBerg, J., 2000, ACM
SIGMOD, Eds. Chen, W., Naughton, J. F. & Bernstein, P. A., 451



20 R. A. Power

A S4 Catalogue Queries

The 14 queries tested in Section 4 are briefly described
below with the sql commands for a few presented.

The first two queries examine the impact of a query that
counts fewer/more rows in the database by adjusting the
rmag threshold. Query 1 tests for rmag values less than
21.75 while Query 2 tests for values less than 12.6.

Query 3, shown below, tests all UGRIZ magnitudes for
values less than 12.6.

Query 3 UGRIZ magnitude query.

select count(*)
from s4
where umag < 12.6

and gmag < 12.6
and rmag < 12.6
and imag < 12.6
and zmag < 12.6

Queries 4–6 use magnitude differences to express
colour constraints. The colour cut used in Query 6 below
is from Gray et al. (2002) where it is described as a search
for white dwarf stars.

Query 6 A search for white dwarf stars.

select count(*)
from s4
where umag - gmag < 0.4

and gmag - rmag < 0.7
and rmag - imag > 0.4
and imag - zmag > 0.4

Query 7 is also from Gray et al. (2002) and aims to
find stars that match a quasar at redshift between 5.5 and
6.5. The query constraint is representative of a user query
corresponding to a non-trivial stellar model and is the most
complicated selection query tested.

Query 7 User-defined stellar model to find quasars.

select count(*)
from s4
where (umag - gmag > 2.0 or

umag > 22.3)
and imag between 0 and 19
and gmag - rmag > 1.0
and (rmag - imag < (0.08 +

0.42*(gmag - rmag - 0.96))
or gmag - rmag > 2.26)
and imag - zmag < 0.25

Query 8 is adapted from Gray et al. (2002) where bin-
ning the magnitude differences using the group by clause
to convert them to integers is discussed. The resulting data
is sorted using the order by clause and the output column
names have been relabelled.

Query 9 is the same as Query 8 except that it includes
the clause: having count(*) <500 to restrict the number
of results found per group.

Query 10 uses the HTM index to query a large region of
the sky in conjunction with a simple colour cut. Query 11
is similar except that a different colour cut is defined and
there is no cone search restriction.

Query 8 Find objects rare in colour space.

select round(umag - gmag) ug,
round(gmag - rmag) gr,
round(rmag - imag) ri,
round(imag - zmag) iz,
count(*) pop

from s4
group by round(umag - gmag),

round(gmag - rmag),
round(rmag - imag),
round(imag - zmag)

order by pop

The remaining three queries, 12–14, are examples of
a self-join. The neighbour table (s4_nn) records pairs of
close stars by listing the records id’s and angular sepa-
ration in arc seconds up to a threshold of 10 arcsec. The
neighbours are calculated as described in Section 6 and
the result loaded into the databases.

Query 12 finds stars very close together, within
0.0083 arcsec, with one of the UGRIZ magnitudes having
a variation greater than 0.1. Query 13 finds binary stars
where one of the stars has the colour of a white dwarf
using the same colour selection as Query 6.

Query 14 Gravitational-lens query.

select count(*)
from s4 a,

s4 b,
s4_nn nn

where a.id = nn.id1
and b.id = nn.id2
and nn.id1 < nn.id2
and nn.sep <= 5.0
and abs((a.umag - a.gmag) -

(b.umag - b.gmag)) < 0.05
and abs((a.gmag - a.rmag) -

(b.gmag - b.rmag)) < 0.05
and abs((a.rmag - a.imag) -

(b.rmag - b.imag)) < 0.05
and abs((a.imag - a.zmag) -

(b.imag - b.zmag)) < 0.05

The last query finds objects that are close to each other
and have similar colours, which could be used to iden-
tify gravitational lens events. Whereas the previous two
queries use small angular separations to find objects very
close together, this time a large portion of the neighbour’s
table will be selected since one-quarter of the records are
within 5 arcsec.


