INDEX

	PAGE	PAGE
Amoeboid Inclusion Bodies of Tobacco Mosaic Virus, De- velopment of	458	Dadswell, H. E., and Ingle, H. D.— The Anatomy of the Timbers of the South-West Pacific Area.
Anacardiaceae, Timbers of the South-West Pacific Area Anatomy of the Proteaceae	391 279	I. Anacardiaceae 391 Dakin, W. J., Bennett, Isobel, and Pope, Elizabeth.—
Anatomy of the Timbers of the South-West Pacific Area Animal Tissues, Cytochrome C	391	A Study of Certain Aspects of the Ecology of the Intertidal Zone of the New South Wales
Oxidase in	139	Coast 176 Dewey, D. W.— See Quinlan-Watson, T. A. F.
lysed Oxidation of Ascorbic Acid in Fruit and Vege-	50	Diptera—See Simuliidae
table Suspensions, Enzyme- catalysed Oxidation of Azotobacter, Toxicity of Oximes	58	Ecology of Intertidal Zone of the New South Wales Coast . 176 Energy Transactions in the Sheep 93
and Oximino Acids to	38	Enzyme-catalysed Oxidation of Ascorbic Acid 58
Bald, J. G.— The Structure of Plastids and Other Cytoplasmic Bodies in	*	Enzyme, Receptor-destroying, Inactivation of Gonadotrophins by 271, 388
Fixed Preparations of Epidermal Strips	452	Enzyme, Receptor-destroying, of Vibrio cholerae 271 Epidermal Strips, Structure of
Inclusion Bodies of Tobacco Mosaic Virus	458	Plastids and Other Cytoplasmic Bodies in 452
Bennett, Isobel.— See Dakin, W. J., and Pope, Elizabeth		Eutermes exitiosus, Temperature Studies of the Habitat of 464
Carrots, A New Virus Disease of Chattaway, M. Margaret.—	303	Fleece, Influence of Copper Deficiency on 376 Fruit Suspensions, Ascorbic Acid
The Wood Anatomy of the Proteaceae		in 50, 58
Colour of Painted Surfaces, Effect on Numbers of Houseflies Copper-catalysed Oxidation of	65	Gay, F. J.— See Holdaway, F. G. Gonadotrophins, Inactivation
Ascorbic Acid Copper Deficiency, Influence on	50	of
Rate of Wool Growth Cytochrome C Oxidase in Animal Tissues, Estimation of	376 139	Metabolism in 333 Holdaway, F. G., and Gay, F. J.—
Cytoplasmic Bodies in Fixed Preparations of Epidermal Strips		Temperature Studies of the Habitat of <i>Eutermes exitiosus</i>
Dadswell, H. E.— See Wardrop, A. B.		with Special Reference to the Temperatures within the Mound

FAGE	PAGE
Hone, M. R. (Hone, Mary R.)-	Marston, Hedley R., and
See Wood, J. G.	Lee, Hector J.—
Houseflies, Effect of Colour on 65	Nutritional Factors Involved in
Houseflies, Susceptibility to Pyre-	Wool Production by Merino
thrum Sprays, Effect of Starva-	Sheep. II. The Influence of
tion on 76	Copper Deficiency on the Rate
Huelin, F. E.,	of Wool Growth and on the
and Stephens, I. Myee.—	Nature of the Fleece 376
The Copper-catalysed Oxida-	Mattner, M. E.—
tion of Ascorbic Acid in Fruit	See Wood, J. G. et al.
and Vegetable Suspensions 50	Metabolism of Plant Cells 17, 163
The Enzyme-catalysed Oxida-	Methane, Production of, by Sheep 130
tion of Ascorbic Acid in Fruit	
and Vegetable Suspensions 58	Necrotic Reactions to Virus Y in
Hutton, E.M.—	the Potato 416
Some Factors Affecting Loca-	Nitrogen Metabolism of
lized and Systemic Necrotic	Plants 38, 163
Reactions to Virus Y in the	Nitrogen Intake in Gramineous
Potato	Plants, Rate of 333
The Separation of Strains from	Nutritional Factors Involved in
a Virus X Complex by Passage	Wool Production by Merino
through Potato Seedlings 439	Sheep 362, 376
Hydrogen, Production of, by the	
Sheep 130	Oat Plants, Utilization of
Inclusion Bodies, Amoeboid, De-	α-Oximinocarboxylic Acids by 163
velopment of 458	Oxidase, Cytochrome C, in Ani-
Influenza Virus, Inactivation of	mal Tissues 139
Gonadotrophins by 271, 388	Oxidation of Ascorbic Acid in
Ingle, H. D.—See Dadswell, H. E.	Fruit and Vegetable Suspen-
Intertidal Zone of New South	sions 50, 58
Wales Coast, Ecology of 176	Oximes and Oximino Acids,
Traies Coust, Decreey of Tro	Toxicity to Azotobacter 38
Kerr, R. W.—	α-Oximinocarboxylic Acids, Utili-
The Effect of Starvation on the	zation by Oat Plants 163
Susceptibility of Houseflies to	
Pyrethrum Sprays 76	Phosphorus Supply, Effects of, on
- y	Rates of Intake of Phosphorus
Lee, Hector, J.—	and Nitrogen and upon Certain
See Marston, Hedley R.	Aspects of Phosphorus Meta-
	bolism in Gramineous Plants 333
Mackerras, M. Josephine, and	Pilgrim, A. F.—
Mackerras, I.M.—	The Production of Methane
Simuliidae (Diptera) from	and Hydrogen by the Sheep 130
Queensland 231	Plant Cells, Metabolism of 17
Marston, Hedley R.—	Plants, Gramineous, Phosphorus
Energy Transactions in the	Metabolism in 333
Sheep. I. The Basal Heat Pro-	Plants, Nitrogen Metabolism
duction and Heat Increment 93	of
Nutritional Factors Involved in	Plastids and Other Cytoplasmic
Wool Production by Merino	Bodies, Structure of 452
Sheep. I. Influence of Fodder	Pope, Elizabeth.—
Intake on the Rate of Wool Growth 362	See Dakin, W. J., and Bennett Isobel
C-FOWIN 30%	Dennett, Isonet

PAGE	PAGE
Potato, Virus Y in, Necrotic Re-	Tobacco Mosaic Virus, Amoeboid
actions to 416	Inclusion Bodies of 458
Proteaceae, Wood Anatomy of 279	
Pyrethrum Sprays, Susceptibility	Vogotoble Sugnangiana Agentic
of Houseflies to 76	Vegetable Suspensions, Ascorbic
	Acid in 50, 58
Quinlan-Watson, T. A. F., and	Vibrio cholerae, Receptor-de-
Dewey, D. W.—	stroying Enzyme of 271
Estimation of Cytochrome C	Virus, Disease of Carrots (New) 303
Oxidase in Animal Tissues 139	Virus, Influenza 271, 388
	Virus, Tobacco Mosaic, Amoeboid
Reaction Wood, Nature of 3	Inclusions of 458
Robertson, R. N., and	Virus X Complex, Separation of
Wilkins, Marjorie J.—	Strains from 439
Studies in the Metabolism of	Virus Y in the Potato 416
Plants. VII. The Quantitative	·
Relation between Salt Accumu-	Wardrop, A. B., and
lation and Salt Respiration 17	Dadswell, H. E.–
•	The Nature of Reaction Wood.
Salt Accumulation and Salt Res-	I. The Structure and Proper-
piration in Plants 17	ties of Tension Wood Fibres 3
Separation of Strains from a Virus	Waterhouse, D. F.—
X Complex by Passage through	The Effect of Colour on the
Potato Seedlings 439	Numbers of Houseflies Rest-
Sheep, Basal Heat Production and	ing on Painted Surfaces 65
Heat Increment in 93	Whitten, W. K.—
Sheep, Energy Transactions in 93	Inactivation of Gonadotro-
Sheep, Merino, Nutritional Fac-	phins. I. Inactivation of Serum
tors Involved in Wool Produc-	Gonadotrophin by Influenza
tion by 362, 376	Virus and Receptor-destroying
Sheep, Production of Methane	Enzyme of Vibrio cholerae 271
and Hydrogen by 130	II. Inactivation of Pituitary and
Simuliidae (Diptera) from	Chorionic Gonadotrophins by
Queensland 231	Influence Views and December
Stephens, I. Myee.—	Influenza Virus and Receptor-
See Huelin, F. E.	destroying Enzyme 388
Strains from a Virus X Complex,	Wilkins, Marjorie J.— See Robertson, R. N.
Separation of 439	Williams, R. F.—
Stubbs, L, L.—	
A New Virus Disease of Car-	The Effects of Phosphorus
rots 303	Supply on the Rates of Intake
Symons, C. P.—	of Phosphorus and Nitrogen
See Wood, J. G. et al.	and upon Certain Aspects of
Systemic Necrotic Reactions to	Phosphorus Metabolism in
Virus Y in the Potato 416	Gramineous Plants 333
viius i in the rotato 410	Wood Fibres, Structure and
Temperature Studies of the II-1:	Properties of 3
Temperature Studies of the Habitat of Eutermes exitiosus 464	Wood, J. G., and Hone, Mary R.—
Timbers of the South-West Paci-	Studies on the Nitrogen Meta-
	bolism of Plants. VIII. Utiliza-
fic Area, Anatomy of. I. Ana-	tion of α-Oximinocarboxylic
cardiaceae 391	Acids by Oat Plants 163

PAGE	PAGE
Wood, J. G., Hone, M. R., Matt-	Wool Growth Rate, Influence of
ner, H. E., and Symons, C. P	Copper Deficiency on 376
Studies on the Nitrogen Meta-	Wool Growth Rate, Influence of
bolism of Plants. VII. Toxicity	Fodder Intake on 362
of Some Oximes and Oximino	Wool Production, Nutritional
Acids to Azotobacter and their	Factors Involved in 362, 376
Utilization 38	