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Summary 

The analysis and interpretation of four split. plot type designs involving diallel 
crosses are presented. In two designs all crosses in a given whole plot have one 
parent in common; the distinction between the two designs arises from the inclusion 
or non-inclusion of parents. In the other two designs (which are split-split.plot 
designs) reciprocal crosses appear together in split plots while whole plots are 
composed of all split plots with one common parent. Mean square expectations 
are given for all four designs for both random and mixed (all effects except genetic 
ones are considered random) models. The estimation and interpretation of genetic 
variance components under random models is discussed and a numerical example 
is presented. 

I. INTRODUCTION 

Griffing (1956b) summarized the analyses and interpretation of a variety of 
diallel crossing systems. The procedures presented for computing the analysis of 
variance, estimation of combining ability, and population parameters are general 
for any design where all genotypes are measured with equal precision. For con­
venience or in order to obtain more precision on either the differences among crosses 
arising from a common parent or the reciprocal cross differences, crosses may be 
blocked by some characteristic of genotype such as common maternal or paternal 
parent. By such blocking, however, precision is lost on the comparison of genotypes 
from different parents and on the comparison of non-reciprocal genotypes, respectively. 
In those designs where such blocking is employed, the customary diallel analyses 
are not usually appropriate. 

All four of Griffing's methods [1, crosses and reciprocals with parents; 
2, crosses and parents, no reciprocals; 3, crosses and reciprocals without parents; 
and 4, crosses, no reciprocals or parents] can be blocked by maternal or paternal 
parent or both. The analyses of two of these blocked experiments (viz. methods 1 
and 3) have been presented in detail by John (1963). In addition to these split-plot 
designs, it is possible to form split split-plot designs for methods 1 and 3. In the 
latter designs whole plots are blocked by one common parent and subplots by the 
second common parent; i.e. subplots consist of two sub-subplots, the cross i xj 
and its reciprocal j X i. In this paper the split-plot designs for methods 2 and 4 

* Contribution from the Institute of Agriculture, Paper No. 5576, Scientific Journal Series. 
t University of Minnesota, St. Paul, Minnesota. 

Aust. J. Biol. Sci., 1965,18,837-50 



838 C. E. GATES AND THE LATE A. N. WILCOX 

and split-split-plot designs for methods 1 and 3 are considered. Common to all 
four designs is the following notation: n inbred lines as the source of the crosses 
which are grown in each of r replicates. 

II. SPLIT-PLOT DESIGNS 

(a) Split-plot Designs for Method 4: Grosses, No Reciprocals or Parents 

In these split-plot designs the cross 1 X 2 (or 2 X 1) appears in both blocks 1 
and 2; however, for convenience in notation the cross appears as lx2 and 2xl 
in blocks 1 and 2, respectively. In general, the i xjth cross is randomly assigned 
to the ith and jth blocks; in effect the number of replicates is therefore 2r. The 
tabulated data for the first replication will take the following form: 

Split Plot 

1 2 3 .. . n 

1 Xu. XU3 . .. X u " 

+' 2 X l•l Xu. ... Xu" 0 
p:; 
" 0 

~ 
3 X l3l X l3• . .. X lSn 

n X lnl X ln• X l ,,3 ... 

There are, therefore, n-l experimental units (split-plots) within each whole plot 
and n whole plots in each of r replications, giving a total of rn(n-l) experimental 
units. 

The model appropriate to these data is 

X gi; = JL+pg+ai+a;+Dgi+Yii+Egi;, 

where X gii is the observed phenotypic value, g = 1, 2, ... ,r; i =/=-j = 1, 2, ... , n; 
JL = overall mean, pg = replication effect, ai = general combining ability effect of 
the ith parental line ; Dgi = whole plot effect; Yi; = specific combining ability effect; 
and Egi; = residual effect. The analysis of variance corresponding to this model 
is shown in Table 1. In the Appendix the derivation of the least squares estimates 
of whole-plot effects and corresponding sums of squares is given. This shows, 
incidentally, that John's (1963) two alternative analyses are really identical. 

Table 1 gives the computing formulae for all sums of squares as well as mean 
square expectations under the completely random model and under a mixed model 
where ai and Yii are considered to be fixed effects. The variance components for 
the former model can be estimated as indicated in the table. To make an approxi­
mate test of significance for a~, a~, and a~, which cannot be estimated directly, 
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Satterthwaite's (1946) approximation for degrees of freedom may be used. The 
variance component a~, if of interest, can be tested directly by M R/ M Rg. Under 
either the random or mixed effects model a~ may be tested by 

F = (Kl-l)MR9/(KlMe-MRq) 
or 

F = MR9/S~. 
a~ and a~ may be tested by 

F = Ms/s~, 
and 

F = Mg/[s;+2rs~+(n-2)s~/2], 

respectively under the random model. One may test for zero specific combining 
ability (SCA) and general combining ability (GCA) effects under the mixed model as 

F = Ms/s~, 
and 

F = Mg/[s;+(n-2)s~/2], 

respectively, where the K's and s~ are defined in Table 1. An alternative method 
of estimation of the variance components is one proposed for such non-orthogonal 
data by Henderson (1953). 

(b) Split-plot Designs for Method 2: Crosses and Parents, No Reciprocals 

The crosses are blocked as in the previous design; there is, however, an 
additional subblock in each block, consisting of the parental line associated with 
the block. Hence there are rn2 observations. The tabulated data will take similar 
form to that design shown previously. 

The model appropriate to these data is 

Xgif = fL+pg+ai+aj+Ogi+Yii+€gii, 

where g = 1, 2, ... , r, and i, j = 1, 2, ... ,n. Definitions of the terms are similar 
to the previous model. 

The corresponding analysis of variance is shown in Table 2. Included in this 
table are the computing formulae as well as the mean square expectations for both 
the random and mixed models. Variance components may be estimated as shown 
in Table 2 or by the Henderson procedure. Tests of significance of these variance 
components or effects or both can be constructed similarly to those tests given for 
the previous model. 

III. SPLIT-SPLIT-PLOT DESIGNS 

(a) Split-split-plot Designs for Method 3: Crosses and Reciprocals, No Parents 

In these split-split-plot designs, each split-plot is comprised of two crosses, 
i xj and its reciprocal j X i. Whole plots in turn are composed of all split plots 
with one common parent, say the ith. Therefore every cross must appear twice in 
every replication giving again effectively 2r replications. In the field layout, 
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randomization is employed in identifying whole plots with parental lines and in 
assigning particular crosses (ignoring reciprocals) to the subplots within whole 
plots and subsequently the two reciprocal crosses to sub-subplots within subplots. 
The tabulated data of the first replication will take the following form: 

Split Plot 

I 
1 2 3 n 

1 XllI2Xll21 X,1l3X1l3, · .. XlllnXllni 

.p 
2 X,22IX,212 XU2.X,232 · •. X t22nX 12n2 ..8 

P-< 

.z 3 X,33IX13,3 X,.23X, •• 2 · •. X 133nX 131'3 

..0: 
t:: 

n XlnnlXlnln Xlnn2Xln2n XlnnaXln3n I ... 

There are, therefore, n-l split plots within each of n whole plots for each of r 
replications. Since two split-split-plots comprise a split plot, the total number of 
experimental units is 2rn(n-l). 

The model corresponding to these data is 

X uhii = fL+pg+ai+aj+8gi+Yij+,8uii+Llghi+1Tij+Eghij, 

where g = 1, 2, ... , r; i i"j = 1, 2, ... , n; and h = i,j. Additional components 
not previously identified include: ,8gij, split-plot effect; Llghi' duplicate split-plot 
effect; and 1Tij' reciprocal cross effect. The analysis of variance derived from this 
model is indicated in Table 3, including mean square expectations for both random 
and mixed models and variance component estimation. There are two checks on 
computations in the two split-split-plot designs: (1) Sy+Ss+Sr must equal the 
genotype sum of squares; and (2) the following relationship of independently 
computed sums of squares must hold: 

St = SR+Sg+SRg+SS+SRs+Sa+Sr+S •. 

Table 3 also indicates how the variance components may be estimated under 
the random model. Only the test of significance of the hypothesis a; = 0 is straight­
forward; other variance components or effects or both may be tested as previously 
indicated with approximate degrees of freedom as given by Satterthwaite's approxi­
mation. 

(b) Split-split-plot Design for Method 1: Grosses, Reciprocals, and Parents 

Crosses in this design are blocked in analogous fashion to. the split-split-plot 
design previously indicated. However, the ith whole plot now contains an 
additional split plot composed of tw.o identical split-split-plots of the ith parent; 
the total number of experimental units is therefore 2rn2• 
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The model pertinent to data of this nature is 

X ghij = fL+pg+ai+aj+8gi+Yij+,Sgij+~ghi+7Tij+€ghii> 

where IJ = 1, 2, ... ,r; i, j = 1, 2, ... ,n; and h = i, j. The terms in this model 
are defined similarly to the previouR model. The analysis of variance derivable from 
the model is indicated in Table 4, including mean square expectations under both 
the random and mixed models and variance component estimation. Tests of 
hypotheses concerning variance components are similar to the previous design in 
execution. The same computational checks are available for this design as for the 
previous design. 

IV. ALTERNATIVE MODELS 

Although it appears logical to provide two and even three "error terms" in the 
split-plot and split-split-plot designs, respectively, it is apparent that a number of 
alternative models could have been considered. For example, if one is justified in 
assuming there are no whole-plot effects (8gi = 0) in the split-plot designs, the 
analyses reduce to Griffing's methods 2 and 4 with the residual terms containing 
r(n2 -1)-(n-l)(n+2)j2 and r(n2-n-l)-(n2-n+2)j2 degrees of freedom, respec­
tively. The coefficients of the variance components in the mean square expectations, 
with the exception of a;, will be doubled, however. The justification for assuming 
this absence of whole-plot effects may stem either from previous or current empirical 
evidence. In the latter case Paull (1950) presents a general exposition of such 
pooling procedures. 

The split-split-plot analyses could have been analysed without the ,Sgij term, 
in which case the a~ component would disappear from all mean square expectations. 
The two sources of variation, "split-plot error" and "duplicate reciprocal crosses" 
sources of variability would coalesce into a single source of variation, say "residual" 
with n[2r(n-2)-(n-3)]j2 degrees of freedom for method 3. The split-split-plot 
analysis for method 1 could also have the 'suij term deleted with analogous changes. 

In the special circumstance where a~, a~, and a~ are all of no consequence in 
the split-split-plot designs, the analyses reduce to the diallel analyses of Griffing's 
methods 1 and 3 with the pooled error terms containing the pooled degrees of 
freedom from the three respective sources of variability. Similar to the split-plot 
analyses, the coefficients of the variance components in the mean expectations will 
be doubled as contrasted to the customary expectations. 

V. INTERPRETATION OF VARIANCE COMPONENTS FOR ALL DESIGNS 

Matzinger and Kempthorne (1956) show that if each of the inbred lines used 
in the diallel cross had an arbitrary but equivalent amount of inbreeding, F, then a~, 
and a~ would be related to additive genetic, dominance, and epistatic variances as 
follows: 

a~ = t(1+F)a~+1\(I+F)2a~A+ ... = ~i(I+F)ia~i. 
t 

a~ = i(I+F)2a~+t(I+F)2a~A+t(I+F)3a~D+ldl+F)4a~D+ ... 

= ~ (I+F)i{2i-l-1}j22i-1a~i+ ~ ~ (I+F)i+2jj2i+2ja~iDj, 
i=2 i=Oj=l 
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where 

C. E. GATES AND THE LATE A. N. WILCOX 

~ = additive genetic variance, 

a~ = dominance variance, 

~A = additive X additive epistatic variance, 

a~D = additive X dominance epistatic variance, 

~D = dominance X dominance epistatic variance, etc. 

TABLE 5 

SIMULATED SPLIT-SPLIT-PLOT DIALLEL DATA OF METHOD 3: CROSSES AND RECIPROCALS, NO 

PARENTS (4 PARENTAL LINES AND 2 REPLICATIONS) 

..., 
..s 
p., 

~ 
..s:: 
~ 

Tabulated data* 

Split Plot 

1 2 3 

I 133 131 ll6 llO 102 
127 122 102 99 90 

2 133 136 ll5 117 108 
126 127 ll3 ll2 97 

3 llO ll4 121 ll7 81 
102 100 ll3 ll5 76 

4 105 105 100 101 83 86 
92 89 90 90 79 79 

Analysis oj Variance 

Source of Variation 
Degrees of 

Sum of Squares Mean Square 
Freedom 

Replications 1 1,150·5 1,150·5 
GOA 3 11,522·4 3,840·8** 
Whole-plot error 3 33·2 11·1 

SOA 2 119·2 59·6 
Split-plot error 2 129·4 64·7 
Duplicate split plots in 

replicates 12 126·2 10·5 

Reciprocal crosses 6 47·1 7·8 
Duplicate reciprocal 

crosses 18 101·5 5·6 

Total 47 13,229·5 

* Upper and lower values for each vertical pair are from replications 
1 and 2, respectively. 

** Significant at 0·01 level. 

4 

106 
84 

105 
91 

85 
70 
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However, both Matzinger and Kempthorne (1956) and Griffing (1958) indicate 
that estimates of population variance components are biased if the parents are 
included except in the special circumstance of the absence of epistasis. Griffing 
(1956a, 1958) further shows that estimates of the population variance components 
are unbiased when the parents are not included in the analysis. 

VI. NUMERICAL EXAMPLE OF SPLIT-SPLIT-PLOT DESIGN 

Assume that four barley lines have been crossed in all possible combinations, 
excluding parents, and the resultant seed planted in the split-split-plot design 
without parents included. The data in Table 5 simulate seed yield in grams per 
8-ft plot. These data demonstrate computing formulae and make no attempt to 
demonstrate biological phenomena. Using the necessary totals calculated from these 
data, one obtains: 

C.F. = (5005)2/48 = 521,875·5; 

St = (133)2+(127)2+ ... +(79)2-C.F. = 13,229·5; 

SR = {(2620)2+(2385)2}/24-C.F. = 1,150·5; 

Sg = IH(2661)2+(2740)2+ ... +(2194)2}-J\-(5005)2 = 11,522·4; 

SRg = H(698)2+(624)2+ ... +(519)2}-/2{(1322)2+ ... +(1099)2}-SR = 33·2; 

Ss = -H(1035)2+(853)2+ ... +(639)2}-C.F.-Sg = 119·2; 

S Rs = t{(533)2+(502)2+ ... +(304)2} -i{(1035)2+(923)2+ ... +(639)2} 
-SRg-SR = 129·4; 

Sa = t{(269-264)2+(224-226)2+ ... +(158-146)2} = 126·2; 

Sr = H(523-512)2+(432-421)2+ ... +(322-317)2} = 47·1; 

Se = t{(133-136)2+(126-127)2+ ... +(76-70)2}-Sr = 101·5. 

Two computational checks are as follows 

(1) S. = 13,229·5-1,150·5- ... -47·1 = 101·5, and 

(2) The sum of squares for genotypes is t{(523)2+(512)2+ ... +(317)2}­
C.F. = 11,688·7, which is also Sg-+ Ss+Sr (= 11,522·4+119·2+47·1 = 
11,688·7). 

From the above computations, an analysis of variance is derived as shown also in 
Table 5. From the mean squares, one obtains 

8~ = 5·6; 

8; = l(7·8-5·6) = 0·28; 

8~ = {2(3)(1l·1)-(1)(64·7)-5(5·6)}/{2(2)(7)} = -0,93 or 0; 

8~ = {3[1(64·7)+11·1-(2)(5·6)]}/{2(2)(7)} = 2'31; 

8~ = HlO'5-5'6-2(0)} = 1·22; 

8; = H59·6-5·6-4(2·31)} = 5'60; 

8~ = {3840·8-5·6-(2)(0)-8(5·60)-4(2·31)}/{4(2)(2)} = 236·3. 
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In the absence of epistasis, additive genetic variance is estimated from 

a~ = i(l+F)a~. 
Hence 

8~ = 8~ = {4j(1 +F)}8~. 

Substituting the estimate of a~ yields 

8~ = {4j(1+F)}(236). 

If the parental lines are homozygous, F = 1, and 

8~ = 2(236) = 472. 

Similarly, 

8t = {2j(1+F)}28~, 

which yields the estimate 

8t = 5·60. 
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APPENDIX 

Derivation of Least Sqoores Estimates of Whole-plot Effects for the Split-plot Designs 
for Method 4: Crosses, No Reciprocals or Parents 

Consider the portion of the model: 

Xgii = fL+pg+ai+ai+Sgi· 

Introducing the customary dummy variables, e.g. Yg (= 1 for the gth replicate, 
o otherwise), the matrix of uncorrected sums of squares and cross-products is: 

where 

a = rn(n-l) 
b = n(n-l)1 
c = 2r(n-l)1 
d = (n-l)1 
1=1·1 ... 1 

Y'Y = ra b 
b' E 
c' F' 
d' G' 

c d1 F G 
H K 
K' L 

(1 xr) 
(1 xn) 
(1 Xnr) 

E = n(n-l)I 
F = 2(n-l)I'1 
H = 2r[(n-2)I+l'l] 
K = [PP ... P] 
L = (n-l)I 
P = (n-2)I+l'l 

G = fn-l 
o 

n-l 0 o 
n-l 

o 
o 

o 
o o n-l 

o o o ... o ... n-l n-l 

~x~ 
~X~ 
~X~ 
~X~ 
~X~ 
~X~ 

(rxrn) 

Also the matrix of uncorrected sum of cross-products with the observed X values 
gives 

(Y'X) = rx ... 1 {Xg . .} . 
{x. i . +X . .i} , 
{Xgd 

After introducing the usual restrictions that 

the reduced matrix is 

"2:.pg = "2:.at = "2:.Sgi = "2:.SlIi = 0, 
(J i 

o 
0' Er 

(Y'Y)r = [a 
0' 0 
0' o 

o 01 o 0 
Hr 0 
o Lr 
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where 

and 

C. E. GATES AND THE LATE A. N. WILCOX 

Er = n(n-l)M, 
Hr = 2r(n-2)M, 
Lr = (n-l) r2M M M 

M2M ... M 

MM ... 2M 

M = 1+1'1. 

(r-l) x(r-l) 
(n-l)x(n-l) 

, (r-l)(n-l)x(r-l)(n-l) 

It can be shown that 

L-l = __ 1 
T rn(n-l) 

(r-l)N -N 
-N (r-l)N 

-N 
-N 

-N -N (r-l)N 

where 
N = nl-l'1. 

It therefore follows from the form of (Y'Y)r that 

{Bgi} = L;:-l(Y'X)r 
where 

(Y'X)r = {Xgi . -Xgn. -Xri. +XrnJ. 

Mter algebraic reduction, it follows that 

{Bgi} = {rnXgi . -nX.i. -rXg .. +X .. Jjrn(n-l). 

The sum of squares associated with these effects is 

S Rg = {Bgi}' (X'Y)r' 

After a considerable amount of reduction, it can be shown that 

S = ~~ X;i. _ ~ X~i. _ ~ X; .. + X~ .. 
Rg n-l r(n-l) n(n-l) rn(n-l) 

[~ X;i. X2] 
- g ·i· S 
- ~ n-l - r(n-l) - R' 

t 
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