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Summary

The analysis and interpretation of four split-plot type designs involving diallel
crosses are presented. In two designs all crosses in a given whole plot have one
parent in common; the distinction between the two designs arises from the inclusion
or non-inclusion of parents. In the other two designs (which are split-split-plot
designs) reciprocal crosses appear together in split plots while whole plots are
composed of all split plots with one common parent. Mean square expectations
are given for all four designs for both random and mixed (all effects except genetic
ones are considered random) models. The estimation and interpretation of genetic
variance components under random models is discussed and a numerical example
is presented.

I. INTRODUCTION

Griffing (1956b) summarized the analyses and interpretation of a variety of
diallel crossing systems. The procedures presented for computing the analysis of
variance, estimation of combining ability, and population parameters are general
for any design where all genotypes are measured with equal precision. For con-
venience or in order to obtain more precision on either the differences among crosses
arising from a common parent or the reciprocal cross differences, crosses may be
blocked by some characteristic of genotype such as common maternal or paternal
parent. By such blocking, however, precision is lost on the comparison of genotypes
from different parents and on the comparison of non-reciprocal genotypes, respectively.
In those designs where such blocking is employed, the customary diallel analyses
are not usually appropriate.

All four of Griffing’s methods [1, crosses and reciprocals with parents;
2, crosses and parents, no reciprocals; 3, crosses and reciprocals without parents;
and 4, crosses, no reciprocals or parents] can be blocked by maternal or paternal
parent or both. The analyses of two of these blocked experiments (viz. methods 1
and 3) have been presented in detail by John (1963). In addition to these split-plot
designs, it is possible to form split split-plot designs for methods 1 and 3. In the
latter designs whole plots are blocked by one common parent and subplots by the
second common parent; i.e. subplots consist of two sub-subplots, the cross ¢ Xxj
and its reciprocal jxi. In this paper the split-plot designs for methods 2 and 4
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and split-split-plot designs for methods 1 and 3 are considered. Common to all
four designs is the following notation: = inbred lines as the source of the crosses
which are grown in each of r replicates.

II. SpriT-PLOT DESIGNS
(a) Split-plot Designs for Method 4: Crosses, No Reciprocals or Parents

In these split-plot designs the cross 1 x2 (or 2x1) appears in both blocks 1
and 2; however, for convenience in notation the cross appears as 1x2 and 2x1
in blocks 1 and 2, respectively. In general, the 7Xxjth cross is randomly assigned
to the sth and jth blocks; in effect the number of replicates is therefore 2r. The
tabulated data for the first replication will take the following form:

Split Plot
1 2 3 n

1 Xi1e Xi1s o Xn
-~
2 2 Xy Xips - Xign
a¥)
2
s 3 Xyig Xy30 - Xisn
=

n Xim Xine Xins

There are, therefore, n-—1 experimental units (split-plots) within each whole plot
and n whole plots in each of r replications, giving a total of rn(n—1) experimental
units.

The model appropriate to these data is
Xyi; = ptpotaita;4+85+vii+eus

where X ;; is the observed phenotypic value, g =1,2,...,7r; ¢ 45 =1,2,..., n;
w = overall mean, p, = replication effect, a, = general combining ability effect of
the ith parental line; 8,, = whole plot effect; y;; = specific combining ability effect;
and e,; = residual effect. The analysis of variance corresponding to this model
is shown in Table 1. In the Appendix the derivation of the least squares estimates
of whole-plot effects and corresponding sums of squares is given. This shows,

incidentally, that John’s (1963) two alternative analyses are really identical.

Table 1 gives the computing formulae for all sums of squares as well as mean
square expectations under the completely random model and under a mixed model
where a; and vy;; are considered to be fixed effects. The variance components for
the former model can be estimated as indicated in the table. To make an approxi-

mate test of significance for o2, of,, and o2, which cannot be estimated directly,
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Satterthwaite’s (1946) approximation for degrees of freedom may be used. The
variance component o2, if of interest, can be tested directly by M /M. Under
either the random or mixed effects model o2 may be tested by

F = (Ky—1)M p,/(K:M ,—M g,)
or
F = M,g,/s
o2 and o2 may be tested by
F = Ms/Sg,
and
F = M, [[s2+2rs3 +(n—2)s3/2],

respectively under the random model. One may test for zero specific combining
ability (SCA) and general combining ability (GCA) effects under the mixed model as

F = Ms/sg,
and
F = M,[[s3+(n—2)s3/2],

respectively, where the K’s and s? are defined in Table 1. An alternative method
of estimation of the variance components is one proposed for such non-orthogonal
data by Henderson (1953).

(b) Split-plot Designs for Method 2: Crosses and Parents, No Reciprocals

The crosses are blocked as in the previous design; there is, however, an
additional subblock in each block, consisting of the parental line associated with
the block. Hence there are rn? observations. The tabulated data will take similar
form to that design shown previously.

The model appropriate to these data is
Xyis = ptpotoita; 485+ vij+e€qis

where g =1,2,...,7r,and ¢,j =1, 2,..., n. Definitions of the terms are similar
to the previous model.

The corresponding analysis of variance is shown in Table 2. Included in this
table are the computing formulae as well as the mean square expectations for both
the random and mixed models. Variance components may be estimated as shown
in Table 2 or by the Henderson procedure. Tests of significance of these variance
components or effects or both can be constructed similarly to those tests given for
the previous model.

IIT. SpriT-sPLIT-PLOT DESIGNS
(a) Split-split-plot Designs for Method 3: Crosses and Reciprocals, No Parents

In these split-split-plot designs, each split-plot is comprised of two crosses,
ixj and its reciprocal jxi. Whole plots in turn are composed of all split plots
with one common parent, say the ¢th. Therefore every cross must appear twice in
every replication giving again effectively 2r replications. In the field layout,



ANALYSES OF VARIANCE OF DIALLEL CROSSES 841

randomization is employed in identifying whole plots with parental lines and in
assigning particular crosses (ignoring reciprocals) to the subplots within whole
plots and subsequently the two reciprocal crosses to sub-subplots within subplots.
The tabulated data of the first replication will take the following form:

Split Plot
1 2 3 n
1 Xiy12X 1121 XinsX s o XinXym
;:? 2 X901 X 1012 X903 X 1232 o XiganXians
:g 3 X331 X 1018 X 1395 X 1552 < X330 X130
=
n X1 Xinin X1nn2X1n2n X1nnsX1nsn

There are, therefore, n—1 split plots within each of n whole plots for each of r
replications. Since two split-split-plots comprise a split plot, the total number of
experimental units is 2rn(n—1).

The model corresponding to these data is

KXonis = pApgtai+0; 48,4y +Bosy+Bgni 755+ €gniss

whereg =1,2,...,r; 1#%j=1,2,...,n; and b =1, j. Additional components
not previously identified include: p,;;, split-plot effect; A ,;, duplicate split-plot
effect; and m;;, reciprocal cross effect. The analysis of variance derived from this
model is indicated in Table 3, including mean square expectations for both random
and mixed models and variance component estimation. There are two checks on
computations in the two split-split-plot designs: (1) S,+8,+S, must equal the
genotype sum of squares; and (2) the following relationship of independently
computed sums of squares must hold:

St = SR+SQ+SR9+S3+SR3+Sd+Sr+Se'

Table 3 also indicates how the variance components may be estimated under
the random model. Only the test of significance of the hypothesis o2 = 0 is straight-
forward; other variance components or effects or both may be tested as previously
indicated with approximate degrees of freedom as given by Satterthwalte S approxi-
mation.

(b) Split-split-plot Design for Method 1: Crosses, Reciprocals, and Parents

Crosses in this design are blocked in analogous fashion to.the split-split-plot
design previously indicated. However, the ¢th whole plot now contains an
additional split plot composed of two identical split-split-plots of the ¢th pa,rent
the total number of experimental units is therefore 2rn2.
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The model pertinent to data of this nature is

Xonis = ptpgtaita;+0g+vii+Bis+Bonitmis+€oniss
where g =1,2,...,7; 3,5=1,2,...,n; and b =1, j. The terms in this model
are defined similarly to the previous model. The analysis of variance derivable from
the model is indicated in Table 4, including mean square expectations under both
the random and mixed models and variance component estimation. Tests of
hypotheses concerning variance components are similar to the previous design in
execution. The same computational checks are available for this design as for the
previous design.

IV. ALTERNATIVE MODELS

Although it appears logical to provide two and even three “error terms’ in the
split-plot and split-split-plot designs, respectively, it is apparent that a number of
alternative models could have been considered. For example, if one is justified in
assuming there are no whole-plot effects (5,, = 0) in the split-plot designs, the
analyses reduce to Griffing’s methods 2 and 4 with the residual terms containing
r(n?—1)—(n—1)(n+2)/2 and r(n?—n—1)—(n*—n-+2)/2 degrees of freedom, respec-
tively. The coefficients of the variance components in the mean square expectations,
with the exception of o2, will be doubled, however. The justification for assuming
this absence of whole-plot effects may stem either from previous or current empirical
evidence. In the latter case Paull (1950) presents a general exposition of such
pooling procedures.

The split-split-plot analyses could have been analysed without the B,;; term,
in which case the o component would disappear from all mean square expectations.
The two sources of variation, ‘“‘split-plot error’” and “duplicate reciprocal crosses”
sources of variability would coalesce into a single source of variation, say “‘residual”
with n[2r(n—2)—(n—3)]/2 degrees of freedom for method 3. The split-split-plot
analysis for method 1 could also have the §,;; term deleted with analogous changes.

In the special circumstance where ¢%, o3, and o} are all of no consequence in
the split-split-plot designs, the analyses reduce to the diallel analyses of Griffing’s
methods 1 and 3 with the pooled error terms containing the pooled degrees of
freedom from the three respective sources of variability. Similar to the split-plot
analyses, the coefficients of the variance components in the mean expectations will
be doubled as contrasted to the customary expectations.

V. INTERPRETATION OF VARIANCE COMPONENTS FOR ALL DESIGNS
Matzinger and Kempthorne (1956) show that if each of the inbred lines used
in the diallel cross had an arbitrary but equivalent amount of inbreeding, F, then o2,
and o2 would be related to additive genetic, dominance, and epistatic variances as
follows:

02 = Y1+ F)o+ &5 (L+F)od,+ . .. = T 5(1+F)ick.

0 = {1+ F)Pod+ J(1+F) ol 1+ FPodp+ 4 (1 +F)odpt ..
= 3 (14F)i{21—1}/2%10%,+ = 3 (L4F)e+2)2i+202,
=2 1=0j=1
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where ‘
o2 = additive genetic variance,
0% = dominance variance,
0%, = additive x additive epistatic variance,
o%p = additive X dominance epistatic variance,
0%, = dominance X dominance epistatic variance, ete.

TABLE 5

SIMULATED SPLIT-SPLIT-PLOT DIALLEL DATA OF METHOD 3: CROSSES AND RECIPROCALS, NO
PARENTS (4 PARENTAL LINES AND 2 REPLICATIONS)
Tabulated data*

Split Plot
1 2 3 4
1 133 131 116 110 102 106
127 122 102 99 90 84
b} 2 133 136 115 117 108 105
A~ 126 127 113 112 97 91
O
°
é 3 110 114 121 117 81 85
102 100 118 115 76 70
4 105 105 100 101 83 86
92 89 90 90 79 79

Analysis of Variance

Source of Variation Degrees of Sum of Squares Mean Square
Freedom

Replications 1 1,150-5 1,150-5
GCA 3 11,522-4 3,840 - 8%*
Whole-plot error 3 33-2 11-1
SCA 2 . 119-2 59-6
Split-plot error 2 129-4 647
Duplicate split plots in

replicates 12 126-2 10-5
Reciprocal crosses 6 47-1 7-8
Duplicate reciprocal

crosses 18 101-5 5-6
Total 47 13,229-5

* Upper and lower values for each vertical pair are from replications
1 and 2, reéspectively.
** Significant at 0-01 level.
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However, both Matzinger and Kempthorne (1956) and Griffing (1958) indicate
that estimates of population variance components are biased if the parents are
included except in the special circumstance of the absence of epistasis. Griffing
(1956a, 1958) further shows that estimates of the population variance components
are unbiased when the parents are not included in the analysis.

VI. NUMERICAL EXAMPLE OF SPLIT-SPLIT-PLOT DESIGN

Assume that four barley lines have been crossed in all possible combinations,
excluding parents, and the resultant seed planted in the split-split-plot design
without parents included. The data in Table 5 simulate seed yield in grams per
8-ft plot. These data demonstrate computing formulae and make no attempt to
demonstrate biological phenomena. Using the necessary totals calculated from these
data, one obtains:

C.F. = (5005)2/48 = 521,875-5;
= (133)24-(127)2+ . . . +(79)2—C.F. = 13,229-5;
= {(2620)%+(2385) 2}/24—C.F. =1,150-5;
= +{(2661)24(2740)2+ . . . +(2194)%} —(5005)% = 11,522-4;
= 1{(698)21(624)2+ . . . +(519)2} —15{(1322)2+ . .. 4-(1099)%} —8; = 33-2;
Ss = 1{(1035)24(853)2+ . .. +(639)} —C.F.—8, = 119-2;
S = (533)2+(502)°+ . . . +-(304)% —4{(1035)*+(923)*+- . . . +(639)%
—8py—Sp =129-4;
S; = H(269—264)2-+(224 —226)24- . . . +-(1568—146)%} = 126-2;
8, = ${(523—512)24(432—421)24 . . . +(322—317)%} =47-1;
S, = }{(133—136)24+(126 —127)2+ . . . +(76—70)%}—8, = 101-5.
Two computational checks are as follows
1) S, =13,229-5—1,150-5— ... —47-1 =101-5, and

(2) The sum of squares for genotypes is }{(523)24-(512)%+ ... 4-(317)%} —
C.F. =11,688-7, which is also S,+ S,+8, (=11,522-44+119-2447-1 =
11,688-7).

From the above computations, an analysis of variance is derived as shown also in
Table 5. From the mean squares, one obtains

s2 =5-6;
2 = 3(7-8—5-6) = 0-28;
s% = {2(3)(11-1)—(1)(64-T)—5(5-6)}{2(2)(7 }= —0-93 or 0;
= {3[1(64-7)+11-1—(2)(5-6)}{2()(T)} =
sf' = H10-5—5-6—2(0)} = 1-22;
2 = ${59:6—5-6—4(2-31)} = 5-60;
52 = {3840-8—5-6—(2)(0)—8(5-60) —4(2-31)}[{4(2)(2)} = 236-3.



848 C. E. GATES AND THE LATE A. N. WILCOX

In the absence of epistasis, additive genetic variance is estimated from

o2 = H14-F)ol.

a

Hence

8§ =65 = {4/(1+F)}s}.
Substituting the estimate of o? yields

8§ = {4/(1+F)}(236).
If the parental lines are homozygous, ¥ =1, and

83 = 2(236) = 472.
Similarly,

2 = 2/(1+F)Ps2,
which yields the estimate

53 = 5-60.
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APPENDIX

Derivation of Least Squares Estimates of Whole-plot Effects for the Split-plot Designs
for Method 4: Crosses, No Reciprocals or Parents

Consider the portion of the model:
Xy = “+P9+ai+a:i+8gi'

Introducing the customary dummy variables, e.g. ¥, (=1 for the gth replicate,
0 otherwise), the matrix of uncorrected sums of squares and cross-products is:

YY=[a b ¢ d

b E F @
¢ FF H K
d ¢ K L
where
a = rn(n—1) E =n(n—1)I (rxr)
b =n(n—1)1 (Ixr) F =2(n—1)1'1 (rxmn)
c=2r(n—1)1 (1Xn) H = 2r[(n—2)I+1'1] (nXn)
d=(n-11 (1 Xnr) K =[PP...P] (nXrn)
1=11...1 L= n—-1I (rn Xrn)
P = (n—2)I4+1'1 (nxXn)
G=[n-1 n—1 0 . 0 . 0 0
0 0n—1 ... n—1 0 0
(rxrn)
0 ... 0 0 ... ()...n—l...n—i

Also the matrix of uncorrected sum of cross-products with the observed X values
gives

(YX)=[X..
(X,.} .
(X, +X.3 |
{Xgi-}

After introducing the usual restrictions that

Sp, = Za; = 28,; = 25,; = 0,
[ 2

the reduced matrix is
YY),=[a
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where -
E, =nn—1)M, (r—1)x(r—1)
H, = 2r(n—2)M, (n—1)x (n—1)
L=m—1)[2M M ... M
M2M ... M
o , (r=1)(n—1) X (r—1)(n—1)
M M ... 2M
and
M =1+11.
It can be shown that
ja__ 1 [N N .. N
T T ra(n—1) —N (r—1)N ... —N
—N —N ... r—1)N
where
N =nl—-1'1.

It therefore follows from the form of (YY), that
B} = L7(Y'X),

where

(YIX)T = {Xgi~_Xyn.—Xri-+Xrn.}'
After algebraic reduction, it follows that
B} = Xy —nX ;. —rX, +X. }Hra(n—1).
The sum of squares associated with these effects is
Sro = 8, X'Y),.
After a considerable amount of reduction, it can be shown that

9. IX Xy, X% XX X2,
R n—1 rn—1) nn—1) " ra(n—1)

2
_S [_Z_X___X__] s
—~Ln—1 r(n—1) &
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