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Summary 

The response to truncation selection is considered for populations which 
reproduce by self-fertilization. Family structure is disregarded in the selection 
process, and individuals are selected or rejected on the basis of phenotypic value. 
For k unlinked loci of small effect, the expected response from n cycles of selection 
is the sum of 

(1) the change in mean due to inbreeding, and 
(2) a component which is a function of the selection intensity and the variances 

and covariances of an unselected popUlation. 
For a single-locus model the expected response is interpreted in terms of the 

parameters of the base population. Predictions may be readily made for random· 
mating populations or for populations with two alleles per locus. 

A general expression is derived for the expected change in mean following 
selection and reversion to homozygosity. This expression is investigated for the 
single. locus model. 

1. INTRODUCTION 

Procedures for estimating the genetic components of variance in an auto
gamous species are well documented. The pioneering study was that of Fisher, 
Immer, and Tedin (1932), who gave expressions for the variance of an F2 generation, 
and of subsequent generations obtained by both selfing and intercrossing, in terms 
of the additive and dominance effects of single loci. The methods of estimation 
were considered in greater detail by Mather (1949), and the theory was extended 
to indicate the possible effects of linkage bias on the estimates. In a later paper, 
Hayman and Mather (1955) proposed an extension of the genetic model to include 
epistatic effects. But although estimation procedures suitable for an autogamous 
species have been considered in some detail, there is little information on how these 
estimates should be used to predict the response from artificial selection. 

In a series of connected studies, Sakai (1954, 1955, 1956) considered a number 
of problems, including how to discriminate the most desirable hybrid combinations 
in early generations of hybrid bulks, and how to construct a selection index for 
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individual plants on the basis of individual measurements, line means, and line 
group means. It was shown that heritabilities are invariably low for the early 
generations following a cross of two lines, and the usefulness of the pedigree method 
of plant selection was questioned on the basis of this result. However, all of these 
investigations were based on a single-locus model, and the only populations considered 
were the segregating generations following the cross of two inbred lines. Panse 
(1940a, 1940b) made use of moment-generating functions in his investigation of the 
response to selection in an F2 population. Several models of gene action were 
considered for a single locus, and values were derived for various characteristics of 
the F 3 population resulting from the selection and self-fertilization of F 2 individuals. 
A more comprehensive set of genetic models were later considered by Panse and 
Bokil (1953) and it was suggested that the results would be of use to a breeder in 
predicting qualitative responses to artificial selection. No formulae were given 
which could be used to predict the absolute magnitude of a selection response. 

In the present study prediction formulae are therefore derived for the response 
to truncation selection in an infinitely large population of self-fertilizing individuals. 
Only the simplest situation is considered, in which the selection process is based on 
individual performance and takes no account of family structure within each 
generation. As such the results are applicable only to species and culture methods 
which permit the ascertainment of individual values free from competition effects. 
Results are presented for the generalized response due to a number of unlinked 
loci, each with many alleles, and then for a more restrictive model the response is 
expressed in terms of components of genetic variance. In the final section the 
consequences of relaxation of selection are investigated. 

II. GENERALIZED SELECTION RESPONSE 

Attention will be given to the diploid genotypes generated by m alleles at 
each of k unlinked loci. It will be assumed that these k loci represent only a small 
subset of the total number of loci controlling the character undergoing selection, 
and that the effects of subsets are additive. 

The genotype of an arbitrary individual with alleles Af. and AJ. at the 8th 
locus may be written as 

1c 
II Af.AJ., 

8=1 

with corresponding genotypic value Y lI!sfs' In this and other expressions, unless it 
is otherwise specified, the set of values 8 = 1, ...... , k are to be assumed for the 
product operator. The genotypic values are completely general and permit all 
classes of between- and within-locus interaction. 

The operation of self-fertilization will be denoted by the letter S. In general 
terms, the expression (st Y lI!sf.) represents the array of genotypic values obtained 
from genotype IIAfsA~s by t generations of self-fertilization. 

Let the frequency of genotype IIAfsA1. in the base population be OflI!sfo' where 
the zero subscript indicates generation number. The symbol of-Iofo- will be used to 
represent the marginal genotypic frequencies at the 8th locus. Summation is 
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assumed to be over all of the i's and j's not specified iu the subscript. The initial 
population mean, with respect to the lr loci under consideration, is given by 

ofL = ~ OfIIi,isYIIi,is' 
all i,j 

Now consider the result of t generations of self-fertilization. The marginal 
genotypic frequencies at the sth locus for the tth generation are 

d~'i" = (t)tOf-i,i,.+{3lsiJ1--( t)I]Of-is' , 

where Of-Is. is the frequency of allele Af" and 

(3ii -- . 
__ {O if is =1= js 

s, 1 if is = js 

(1) 

The frequency in equation (1) is marked with an asterisk to indicate that it is 
the result of self-fertilization without selection. Siuce the k loci are unlinked, the 
overall genotypic frequency may be found as the product of marginal genotypic 
frequencies, i.e. 

d'iusi, = II ti~.is·· 
The population mean after t generations of selfing may be found either as 

or as 

tfL * ~ tinl", Y IIisi" 
all i,j 

tfL* = ~ ofIIi,is(StYIIi,i,)· 
all i,j 

(a) Covariances in the Absence of Selection 

(2) 

For selection with random mating, the expected response can be written in 
terms of covariances between related individuals (e.g. see Griffing 1960). It is therefore 
of interest in the present case to derive similar expressions for the covariances between 
relatives, and in this section particular attention will be given to the expected 
covariance between an individual in the tth generation and its offspring array in 
the nth generation of self-fertilization (n > t). 

The frequency of IIAf,AJ, after t generations of self-fertilization without 
selection is dnisi,. In the nth generation this genotype will have produced an array 
of genotypes for which the genotypic values may be written sn-t Y IIisJ.' The desired 
covariance in an unselected population is therefore 

C(t,n) = ~ tinl i YIIi i (sn-tYIIi i )-tfL* nfL* 
alli,j as ss IS 

= ~ tin is;' ( Y IIisi, --tfL*)(sn-t Y IIisi,). (3) 

(b) Response from n Cycles of Selection 

Suppose that the population phenotypic variance, which takes into account 
all sets of loci, has a value of ta2 after t generations of selection. It is convenient 
at this poiut to define 

tZIIisi, = (Y IIi,i, -- tfL) I ta 
and 

tZni,i, = (Y IIi,i, --tfL*)/ta. 
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The assumption will be made that the loci within the A subset are all of small effect, 
so that the deviation of any genotypic value from the mean is always small relative 
to the phenotypic standard deviation. It is then reasonable to assume that the 
squares and products of Z values are of negligible magnitude. 

The selection scheme will now be considered in which only the individuals 
with phenotypic value exceeding a certain arbitrary value are chosen to contribute 
to the next generation. Let the standardized selection differential have a value i. 

Then it follows from Kimura (1958) that the frequency of IIAf,A1, in the set of 
selected individuals is given by 

ofJrIi,i, = of IIi,i. (l +i OZIIi,i,)' 

The selected individuals are allowed to self to produce the next generation, which 
therefore has a mean of 

IlL = ~ ogIIi,i.(S Y IIi,i') 
all i,j 

= ~ ofIIi,i,(l+i OZIIi,i,)(S YIIi,i,) 

= llL* +i ~ OfIIisi,OZIIisi,(S Y IIi,i')' (4) 

The genotypic frequencies following one cycle of selection and self-fertilization 
will be denoted dIIisi, 

From equations (3) and (4) it follows that 

IlL = llL*+iC(O, l)/oa. 

This result may be compared with that of Griffing (1960), who found that the mean 
of the progeny population which results from random mating selected parents from 
any arbitrary population is equal to the sum of (1) the mean of the population after 
it has been allowed to mate at random for one generation in the absence of selection, 
and (2) the increment 2iCov(PO)/oa, where Cov(PO) is the covariance of parents 
and offspring in the base population. 

A second cycle of selection of the same intensity gives 

IgfIisi, = IfIIisi,(l +i l ZfIf,!,), 

and subsequent self-fertilization gives a population with mean 

2IL = ~ IgIIi,i,(S Y fI.,!,) 
all i,j 

= ~ (dIIi,i, +i dIIi,i, 1 ZIIi,i,)(S Y IIi,!,). 

But the frequencies dfIisi, are the result of self-fertilization in a population with 
frequencies ogIIi,i" and hence 

2IL = ~ ofJIIi,i,(S2 YIIi,i,)+i ~ dIIi,J, l ZIIi,i'(S YIIi,!,) 

= 2IL*+i ~ OffIi,is OZIIisis(S2 YfIi,i,)+i L dIIi,i, l ZIIisi,(S YIIi,J,)' 

In general, after n cycles of truncation selection the population mean is found to be 

n-l 

nIL = nIL*+i ~ [ ~ tiIIi,i, tZIIi,i,(sn-tYfIi,i.)]. 
t=O all i,j 

(5) 
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Equation (5) is written in terms of the parameters of the selected population. 
However, by definition 

tZm,i, = (Ym,i.-tl'-*)JtU-(tl'--tl'-*)JtU 
t-l 

= tZiU,i. -(iJ tU) ~ [ ~ u/m,i, uZm'i,(sn-u Y m,i.)]. 
u=O all i,j 

The second term on the right-hand side of this equation is effectively zero 
since the product of two Z's is a negligible quantity. Equation (5) therefore becomes 

n-l 

nl'- = nl'-*+i ~ [ ~ tlm,i, tZill.i,(sn-tYm,i'>]. 
t=O alli,j 

(6) 

Further, by a method similar to that used to deri\Te equation (5), with repeated 
application of equations (1) and (2), it may be shown that 

n-l 

n/m,i, = n/nl'i, +i ~ {[(t)n-t]k[tim,i, tZm,1. 
t=O 

k 

+(2n- t_l) ~ (filuiu ~ tim,i. tZm.iJ 
u=1 3u 

+(IJ2!)(2n- t-l)2 ~ (fitui.fii.'iu' ~ tint,i, tZm,i.) 
u=l=u' ju,ju' 

+ ............ J}. 

The second term on the right-hand side is a function of Z values, and substitution 
into equation (6) therefore gives the final result that 

n-l 

nl'- = nl'-*+i ~ [ ~ tinlf tZnlf (sn-tynlf )]. 
t=O alIi,j 88 88 88 

(7) 

From equation (3) it is clear that this expression may be rewritten as 

n-l 

nl'- = nI'-*+i ~ [O(t,n)Jtu]. 
t=O 

(8) 

Equation (5) could have been written in this form but the covariance term would 
have referred to the population undergoing selection. This equality of the covariance 
terms follows from the assumption that loci are of small effect relative to the 
phenotypic standard deviation. In the same way the overall genotypic, and hence 
phenotypic, variances are identical for the selected and unselected populations, 
and only the symbol tU2 will therefore be used. 

III. RESPONSE IN TERMS OF GENETIC PARAMETERS 

In the prediction of selection response under random mating the parameter 
of overriding importance is the covariance between parents and offspring in the 
base population (e.g. Griffing 1960). From equation (8) it is clear that a less simple 
situation exists for selection with self-fertilization, in that the number of covariances 
to be estimated is equal to the number of cycles for which a predicted response is 
required. In addition, while the phenotypic variance remains constant for a popula
tion mating at random, this is not necessarily so when' propagation is by self-
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fertilization. For the particular case of a population with a high level of heterozygosity 
and no overdominant loci the phenotypic variance will tend to increase as selfing 
proceeds. 

In an attempt to deal with these difficulties a single locus model will be 
considered and the covariance C(t,n) will be expressed in terms of genetic parameters 
of the base population, that is the Oth generation. When this is done, it is sufficient 
to estimate the genetic parameters to determine C(t,n) at any stage of self-fertilization. 
Although the theory is based on a single locus, it will again be assumed that the effects 
of many independent loci may be summed. Explicit expressions will not be given 
for the population phenotypic variance since the genotypic variance for the single 
locus may always be found by substituting n = t in the appropriate expression 
for C(t,n), and then 

tU2 = ~ C(t,t)+ui, 
loci 

where ui is the error variance, assumed to be constant. 
The subscripts of the previous section will be simplified by putting i l = i and 

jl = j, and omitting all other subscripts. The "dot" notation will be used, e.g. 

ofi. = ~ ofij· 
j 

A completely general model will be considered, such that the value of genotype 
AiAj is given by 

Y lj = o~+al+aj+olj (i,j = 1, ... ,m). 

In this equation, al and aj are the additive effects of the ith a~djth alleles respectively, 
and Olj is the dominance effect associated with genotype AIAj. The a's may be 
determined by a least-squares procedure, which yields the normal equations 

ofl.ai+ ~ ofijaj = ~ ofil(Yjj-o~) (i = 1, .. ,m). 
j j 

Summation over this set of equations gives 

~ ofi.ai = o. (9) 
i 

It can be further shown that 

~ ofijoij = ~ dUOij = o. (10) 
i j 

Following Kempthorne (1957), the additive variance in the base population 
is given by 

~ = 2 ~ ofiJal(Yij-o~) 
ij 

= 2 ~ ofi.ar+2 ~ ofijalaj. 
i ij 

(11) 

The remainder of the variance is attributable to dominance effects, and is given by 

u~ = ~ ofljorj. (12) 
ij 

For a single locus, equation (3) reduces to 

C(t,n) = (t)n-t ~ d;j(Yij-t~*)[Yij+(2n-t-l)YiI]. 
ij 

(13) 
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Similarly, from equation (1) 

dtj = (WO/I1+,BI1[l-(W]o/l., 
so that 

O(t,n) = (l)n ~ 0/lJ(Ylj-tfL*)[YIi+(2n-t-l)YIi]+[1-(l)t] ~ O/I.YU(Yij-tfL*). 
ij i 

But 

and therefore 

tfL* = ~ d;jYlJ 
ij 

= (!)IofL+[l-(t)t] ~ O/I.Yll 
i 

= ofL+[l-(W] ~ O/I.SII' 
i 

O(t,n) = (t)n ~ 0/1i(Ylj-ofL)[YlJ+(2n-t-l)Yll]+[1-Wt] ~ o/l.YII(YIl-ofL) 
ij i 

-(l)n[l-(l)t] ~ O/I.SII ~ 0/1i[YlJ+(2n- t-l)YIi] 
i ij 

-[1-(-W]2 ~ O!t.SII ~ o!t.Yu' 
, i 

Substitution of gene effects into this equation yields the final result 

O(t,n) = [4-2(t)t] ~ 0/1.ocr+2(!)1 ~ o/lJoctoc, 
i ij 

+[(W_(l)n] ~ ofl,(ocl+OC,)SIl+4[1-(l)t] ~ o/l.oc;Su 
tJ t 

(14) 

+[l-(l)t] ~ O/I.Sfi-[l-(t)t][l_(l)n]( ~ 0/1.Sjj)2+(l)n ~ oil'S;,. (15) 
i i ij 

This equation is valid only if the oc's and S's are defined in the base population, 
and for this to be so all ofthe 01 Ii must be non-zero. This somewhat limiting restriction 
will apply in all of the discussion which follows. 

Although each of the unknown functions in equation (15) is estimable, it is clear 
that the equation is of little practical value. However, there are two classes of 
population for which a simplified result may be obtained, namely a population which 
has arisen by a random-mating procedure and a population which has only two alleles 
present per locus. These two cases will now be considered in turn. 

(a) Random-mating Population 

The significant feature of a random-mating population is that, for all i andj, 

o/u = (0/1.)(0/.,)· 

The terms involving the products OCt OCt and oc, S;; in equation (15) are therefore zero. 
However, the number of unknown functions in the equation for O(t,n) is still prohi
bitively large. The assumption will therefore be made that all dominance effects 
are zero, in which case the mean value of the character is not expected to change 
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with self-fertilization in the absence of selection. Substitution of the expressions 
for O(t,n) and tU2 into equation (S) therefore gives 

n-l 

nil- = i ~ ([8(t). ~]/[8(t) . u~+ui]l}, 
t=O 

where 
8(t) = 2-(t)!. 

This is equivalent to the expression presented by Brim and Cockerham (1961). 

(b) Populations with two Alleles per Locus 

The restriction (9) may be written as 

OC2 = -(0/1.OC1)/0/2.' 

so that equation (11) for the additive variance in the base population becomes 

~ = (ocrJof~.)(S-D2), (16) 
where 

S = 0/22+0/11> 
and 

D = 0/22-0/11. 

Similarly, 312 and 322 may be written in terms of 311> and there results 

~ = (0/113rl/20/120/22HS-D2). 

Finally, the covariance UAD will be defined as 

With this definition, 

UAD = t ~ 0/11 (ocI+OCj) 3i1 
ij 

= (D OCI 3n/40/2.0/22HS-D2). 

0(0,1) = U~+UAD+t~. 

(17) 

(IS) 

There exist a number of useful relationships involving the genotypic and genic 
frequencies, namely: 

and 

oh = t (I-D), 

oh = t (I+D), 

0/~2+0Jrl = t(S2+D2), 

0/11 0/22 = l(S2-D2). 

These relationships, and those between the oc's and the 3's, are used to write equation 
(15) in the form 

O(t,n) = (ocrJon.)[1-2(!)to/12-D2] 

+(Doc13n/20/2.0/22){[(w-(!)n](S-D2)+2[1-(W](I-D2)} 

+{[I-mt]D2(I-D2)3rl/40/~2} 

+ [(t)n(s -D2)3rl/So/12 On2]{ (S -D2)[1-2(!)to/12]-2D20/12}. 
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From equations (16), (17), and (18) it then follows that 

O(t n) = [1-2(WofI2-D2] 2 
, (S-D2) aA 

{2[( W-( t)n](s -D2)+4[1-( W](I-D2)} 
+ ~-~ ~ 

{2[I-mt]D2(I-D2)ofI2} 2 

+ (S2-D2)(S-D2) aD 

+(1.)n{[1-2mtofI2](S _D2] -2D20fI2}~ 
2 (S2-D2) D· 

125 

(19) 

For the special case of D = 0, equation (19) and the corresponding equation 
for the phenotypic variance reduce to 

O(t,n) = (lIS)[1-2(Wof12][a~+mna1], (20) 
and 

ta2 = (1IS)[1-2mtof12][a~+(Wa1]+a~. (21) 

These would be the appropriate expressions for selection in a population derived 
by self-fertilization from a cross of two homozygous lines. 

IV. RELAXATION OF SELECTION 

Of particular interest for an autogamous species is the gain after selection has 
been relaxed, and the population has resumed its homozygous condition. For a 
population which has been selected for n cycles and then allowed to revert to 
homozygosity the expected mean will be written as nfl-H. 

In the general notation, the frequency of genotype IIAf,A~, in the first set 
of selected individuals is oIJITi,j,. If self-fertilization is then carried out to homozygosity, 
the expected frequency of IIAf,Af. is given by 

~ olJnisi,' 
allj 

since the k loci are unlinked. The proof of this relationship for the two-locus case 
is given by Griffing (1956). It follows that 

lfl-H = ~ ( ~ olJni,j,) Y ITisi, 
all i all j 

= ~ ofITi,j, Y ITi,i, +i ~ OfITisi, OZITi,j, Y ITi,is. 
all i,j all i,j 

In Q similar fashion 

2fl-H = ~ ( ~ IIJITi,j,) Y ITi,is 
all i all j 

= ~ dnt,i,(I+i I ZITi,j.) Ynt,i. 
all i,j 

= ~ oiJITi,j, Y ITi,i. +i ~ lfnt,j, I Znt,j,) Y ITi,i, 
all i,j all i,j 

= ~ Ofni,j, Yntsis+i ~ ofnish oZntsJ, Y ntsi• 
all i,j all i,j 

+i ~ lfnids lZITisJ. Y ITist,· 
all i,j 
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As a general result, after n cycles of selection 

n-l 

nfLH = ~ ofIT"j, YITi,i,+i ~ ( ~ tiITi,js tZITi,js Y ITisi,)' 
all i,j t = 0 all i,j 

By the same manner in which equation (7) was derived from equation (5), this 
expression may be transformed to give 

n-l 

nfLH = ~ of IT isis Y ITi,i. +i ~ ( ~ tiITi'is tZITisjs Y ITi.i,). 
all i,j t=O all i,j 

It follows that 
n-l 

nfLH = ~. ofITisjs YITisis+i ~ [C(t,OO)/tU ], 
all ',J t=O 

(22) 

where 
C(t,OO) = lim C(t,n). 

n-+oo 

For the general one-locus case, from (15) 

C(t,oo) = [4-2(t)I] ~ ofi. OI:r+2(t)t ~ ofjj OI:i OI:j+(t)t ~ Ofij(OI:i+OI:j)8 jj 

o OJ OJ 

+4[1-(t)I] ~ ofi. OI:! 8il+[1-(t)t][ ~ ofi. 8;!-( ~ ofi. 8jj)2J. (23) 
iii 

When the genotypic frequencies in the base population are the product of gene 
frequencies, two of the product terms disappear and there remains 

C(t,oo) = [4-2(t)I] ~ ofi. 0I:;+[4-3(t)I] ~ ofi. OI:i Oil 
i i 

+[l-(t)t][ ~ ofi. of; -( ~ ofi. 8jj)2J. 
i i 

(24) 

For the case of two alleles per locus, substitution of n = 00 into equation (19) gives 

C(t (0) = [1-2(t)lof12-D2]a2 
, (S-D2) A 

{
2( t)t(S -D2)+4[1-(t)t](1-D2)} 

+ (S-D2) aAD 

+{2[1-(t)t]D2(1-D2)of12} 2 

(S2-D2)(S-D2) aD' 
(25) 

As may be expected, when D = 0 the last two terms disappear so that the covariance 
is a function of the additive variance alone. 

V. DISCUSSION 

The genotypic frequencies of a large random-mating population remain 
constant from generation to generation if selective forces are not acting, and genetic 
variability is therefore maintained in a form readily utilizable by artificial selection. 
By way of contrast, a self-fertilizing population normally comprises a number of 
homozygous genotypes which, with continued selfing, offer limited potential for 
genetic improvement. Hybridization should therefore precede artificial selection 
for such a population, and it is with hybrid material constructed in this manner 
that the present study is concerned. 
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The key result of the study is the equation for the expected population mean 
after n cycles of individual selection, viz. 

n-1 

nJL = nJL*+i ~ [C(t,n)/tu]. 
t~O 

It is clear that the natural change in mean due to decreasing heterozygosity is a 
component of the observed response. If allowance is made for this factor, the 
heritability for the tth cycle of selection is 

h2(t,n) = C(t,n)/tu2. 

This is the relevant expression when selection is carried out in the tth generation 
and the response is measured in the nth generation. 

There are several courses of action open to a person wishing to predict the 
selection response for a population of self-fertilizers. The first method would be to 
grow the population for several generations in the absence of selection and thus 
estimate the means, variances, and covariances necessary for prediction. The major 
assumption would be that of no linkage between the loci responding to selection. 
This method has little attraction, however, since it would be necessary to grow 
n generations of plants to predict the response for n cycles of selection. One of the 
less general methods may therefore be more suitable. 

On the assumption that loci do not interact, equation (15) gives the required 
covariance in terms of single-locus effects. Although the number of unknown para
meters is probably too great for the equation to be of any predictive value, there 
are two classes of population for which a simplified result is obtained. The first 
type has genotypic frequencies equal to the products of gene frequencies, for example 
the population resulting from a diallel intercross of several parents. Some of the 
problems of estimation have been considered by Harris (1964). There are few 
difficulties if no dominance is assumed, possibly a reasonable assumption for an 
autogamous species. 

A simple result is also obtained if it is reasonable to assume only two alleles 
per segregating locus in the base population. Such a population would result from 
a hybridization scheme between two homozygous lines. However, it would be 
necessary to know the mating procedure by which the population was constructed, 
since genotypic frequencies enter into the prediction equation. 

A common procedure for an autogamous species is to cross two inbred parents 
and then repeatedly self the hybrid material. The resulting populations have two 
alleles per locus and the homozygotes equally frequent, and, as was noted in the 
previous section, the covariance C(t,n) and variance tU2 are functions of the additive, 
dominance, and error variances alone. The covariance is a function of only the 
additive variance when the gain to be estimated is the ultimate gain following 
relaxation of selection. 

Selection in an F2 population, which has oln = 0112 = 0122 = t, will be used 
as an example. Direct application of equations (8), (20), and (21) gives 

* _ n-1 [2-mt][u1+mnu~] 

nJL = nJL +t t~O {[2-(W][u1+mtu~]+u~p' 
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The equation for the ultimate gain following relaxation of selection is similar except 
that the dominance variance does not appear in the numerator. 

From (14) 

n""'*-n-l""'* = t(n-l""'*-n-2""'*)' 

This equation could be used to estimate the change in mean in the absence of selection 
for the above example. In practice, it would be necessary to observe the unselected 
mean for at least two generations. It may be noted that if dominance of the "plus" 
genes is a significant factor in the genetic structure of a population, then the natural 
decrease in mean may be of such a high value that the overall response is negative 
for one or more cycles of selection. This result may be compared with the situation 
for a random-mating population, for which the expected selection response is always 
a positive function of the additive variance. 

For the single-locus theory to be applicable it is necessary that the gene effects 
are defined in the base population. This is always so for a random-mated base 
population, but there is a restriction on the type of two-allele population which can 
be considered. For example, in a backcross population only one homozygote and 
the heterozygote are represented at each locus, so that dominance effects are 
undefined. One way of overcoming this difficulty would be to determine, from first 
principles, the expected genotypic frequencies after one cycle of selection and then 
treat this as the base population. 

A basic assumption of the present study is that the squares and products of 
Z values are of negligible magnitude. In its original form (Kimura 1958) this 
assumption stated that the effects of individual loci are small relative to the total 
phenotypic standard deviation, but Griffing (1960) extended the concept to include 
the effects of subsets of loci. The present study follows this later development. 
No general theory exists to predict the response of loci of large effect, although 
their patterns of response may be investigated by methods such as that used by 
Latter (1965) for selection with random mating. In practice the effects of individual 
loci are always unknown, and so the present theory should not be applied for more 
than two or three cycles of selection. 
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