NUCLEAR DISTRIBUTION IN VEGETATIVE CELLS OF *OPHIOBOLUS GRAMINIS* AND OTHER CEREAL ROOT PATHOGENS*

By S. C. CHAMBERS[†]

Difficulty is sometimes experienced in distinguishing between O. graminis and sterile fungi which form "Ophiobolus-like" runner hyphae on cereal roots. However, it is possible that nuclear distribution in mycelium may prove a differential character as different distributions have already been reported for O. graminis (Chambers and Flentje 1967) and a cereal root-attacking strain of *Rhizoctonia solani* (Flentje, Stretton, and Hawn 1963). This paper, therefore, describes comparisons of nuclear distribution in O. graminis and several other cereal root pathogens including a sterile fungus which formed Ophiobolus-like runner hyphae.

Materials and Methods

(i) Fungi.—The fungi listed in Table 1 were used.

(ii) Mycelial Preparations for Nuclear Studies.—Inoculum of an isolate was placed on Cellophane overlying potato-Marmite-dextrose agar in a Petri dish. After incubation for 2-5 days at 20°C a sector was removed and stained with HCl-Giemsa (Robinow 1945) adapted from the method described by Hrushovetz (1956).

(iii) Counts and Measurements.—Nuclei of an isolate were counted in 200 cells from each of three sources: hyphae near periphery of a colony and hyphal tips both peripheral and internal. The same cells were measured with a calibrated eyepiece micrometer.

Results

Details of counts and measurements are given in Table 1. These results demonstrate that *O. graminis* differed from all other fungi, including the sterile isolate, in that it had fewer nuclei per cell. In particular, *O. graminis* tip cells were predominantly uninucleate whereas those of other fungi were generally multinucleate. Considerable differences in nuclear distribution also occurred between other species.

Discussion

Results indicate that nuclear distribution is a useful adjunct for distinguishing between *O. graminis* and other cereal root pathogens, including sterile fungi which form *Ophiobolus*-like runner hyphae. Results also showed that species of *Fusarium* differed considerably from one another in nuclear distribution. This is of significance, especially in view of taxonomic problems which have resulted in widespread usage

* Manuscript received May 15, 1970.

[†] Victorian Plant Research Institute, Burnley, Vic. 3121.

of two different classifications (Wollenweber and Reinking 1935; Snyder and Hansen 1940, 1941, 1945) for the genus. Nuclear distribution was similar in the morphologically related *Curvularia* spp. and *Helminthosporium sativum* and is, therefore, of no value for differentiating between them.

Fungus	Length of Cells (µm)		Width of Cells	No. of Nuclei/Cell	
	' Mean	Range	(μm)	Mean	Range
	Periphera	l tip cells			
Ophiobolus graminis	$97 \cdot 47 \pm 4 \cdot 65$	22 - 224	$2 \cdot 32 \pm 0 \cdot 05$	$1 \cdot 2 \pm 0 \cdot 04$	1 - 2
Unknown (sterile)*	$63 \cdot 79 \pm 3 \cdot 02$	14 - 152	$2\!\cdot\!08\!\pm\!0\!\cdot\!03$	$4 \cdot 1 \pm 0 \cdot 17$	1–11
Curvularia ramosa	$177 \cdot 42 \pm 5 \cdot 66$	38 - 311	$2 \cdot 72 \pm 0 \cdot 06$	$13 \cdot 8 \pm 0 \cdot 63$	4 - 33
C. spicifera	$113 \cdot 70 \pm 6 \cdot 66$	12 - 294	$2 \cdot 64 \pm 0 \cdot 05$	$11 \cdot 4 \pm 0 \cdot 67$	1 - 24
Fusarium avenaceum	$209 \cdot 50 \pm 10 \cdot 48$	36 - 492	$3 \cdot 36 \pm 0 \cdot 09$	$3 \cdot 0 \pm 0 \cdot 20$	1–10
F. culmorum	$127 \cdot 92 \pm 6 \cdot 55$	30 - 428	$3 \cdot 12 \pm 0 \cdot 05$	$8 \cdot 6 \pm 0 \cdot 36$	2 - 19
F. graminearum	$141 \cdot 06 \pm \ 7 \cdot 72$	35 - 444	$4 \cdot 00 \pm 0 \cdot 09$	$21 \cdot 5 \pm 1 \cdot 39$	3 - 69
Helminthosporium sativum	$174 \cdot 19 \pm 4 \cdot 63$	37 - 306	$3 \cdot 12 \pm 0 \cdot 06$	$12 \cdot 9 \pm 0 \cdot 50$	2 - 28
Wojnowicia graminis	$152 \cdot 29 \pm 5 \cdot 73$	50 - 324	$3 \cdot 52 \pm 0 \cdot 07$	$15 \cdot 8 \pm 0 \cdot 71$	4-38
	Internal	tip cells			
Ophiobolus graminis	$24 \cdot 72 + 1 \cdot 70$	10 - 127	$2 \cdot 16 + 0 \cdot 05$	$1 \cdot 1 + 0 \cdot 02$	1-2
Unknown (sterile)*	$25 \cdot 63 + 1 \cdot 10$	9 - 65	$2 \cdot 29 + 0 \cdot 07$	$2 \cdot 2 + 0 \cdot 12$	17
Curvularia ramosa	$88 \cdot 85 \overset{-}{+} 5 \cdot 59$	14-308	$2 \cdot 64 + 0 \cdot 06$	$8 \cdot 5 + 0 \cdot 53$	1 - 28
C. spicifera	$71 \cdot 86 + 5 \cdot 36$	14 - 218	$2 \cdot 48 + 0 \cdot 04$	$6 \cdot 2 + 0 \cdot 50$	1 - 27
Fusarium avenaceum	$41 \cdot 78 \stackrel{-}{+} 1 \cdot 98$	10-104	$2 \cdot 64 + 0 \cdot 05$	$2 \cdot 2 + 0 \cdot 10$	1-6
F. culmorum	$68 \cdot 59 + 3 \cdot 11$	11 - 156	$3 \cdot 28 + 0 \cdot 07$	$5 \cdot 9 \pm 0 \cdot 33$	1 - 16
F. graminearum	$60 \cdot 92 \pm 3 \cdot 69$	16 - 226	$3 \cdot 92 \pm 0 \cdot 09$	$8 \cdot 6 \pm 0 \cdot 54$	1 - 23
Helminthosporium sativum	$60 \cdot 58 + 4 \cdot 43$	9-184	$2 \cdot 80 + 0 \cdot 06$	$3 \cdot 9 + 0 \cdot 30$	1 - 15
Wojnowicia graminis	$37\cdot48\stackrel{-}{\pm}1\cdot79$	10 - 86	$2 \cdot 72 \pm 0 \cdot 06$	$3 \cdot 4 \pm 0 \cdot 22$	1 - 15
	Internal n	on-tip cells	3		
Ophiobolus graminis	$33 \cdot 70 \pm 1 \cdot 94$	8-111	$2 \cdot 56 \pm 0 \cdot 07$	$1 \cdot 2 \pm 0 \cdot 05$	1-4
Unknown (sterile)*	$25 \cdot 45 + 0 \cdot 57$	9-68	$2 \cdot 06 + 0 \cdot 04$	$3 \cdot 8 \pm 0 \cdot 32$	1-18
Curvularia ramosa	$47 \cdot 41 + 1 \cdot 50$	17 - 94	$3 \cdot 28 + 0 \cdot 10$	$5 \cdot 4 \pm 0 \cdot 24$	1–11
C. spicifera	40.60 + 1.50	15-83	$2 \cdot 80 + 0 \cdot 05$	$4 \cdot 2 + 0 \cdot 21$	1 - 12
Fusarium avenaceum	$42 \cdot 31 + 2 \cdot 22$	4-114	$3 \cdot 20 \pm 0 \cdot 08$	$1 \cdot 9 \pm 0 \cdot 10$	1 - 5
F. culmorum	$53 \cdot 18 \stackrel{-}{+} 2 \cdot 51$	17 - 206	$3 \cdot 60 \pm 0 \cdot 06$	$5 \cdot 3 \pm 0 \cdot 28$	2 - 13
F. graminearum	$46\cdot79 \stackrel{-}{\pm} 2\cdot92$	11 - 226	$5\cdot44\overset{-}{\pm}0\cdot11$	$5 \cdot 6 \pm 0 \cdot 40$	1 - 23
Helminthosporium sativum	30.52 ± 1.06	9-84	$3 \cdot 52 + 0 \cdot 06$	$3 \cdot 7 \pm 0 \cdot 18$	1-10
Wojnowicia graminis	$31 \cdot 23 + 1 \cdot 24$	13 - 82	$3 \cdot 76 + 0 \cdot 07$	$3 \cdot 4 + 0 \cdot 17$	1-8

 TABLE I

 SIZE AND NUCLEAR NUMBER OF CELLS OF SEVERAL FUNGI

* Forms Ophiobolus-like runner hyphae on roots.

Acknowledgments

Grateful acknowledgment is made to Dr. R. Dodman and Mr. R. Price for cultures of unknown (sterile) and *Fusarium graminearum* respectively; and to Miss C. Lardner for invaluable technical assistance. This work was supported by funds from the Wheat Industry Research Council of Australia.

References

- CHAMBERS, S. C., and FLENTJE, N. T. (1967).—Studies on oat-attacking and wheat-attacking isolates of *Ophiobolus graminis* in Australia. Aust. J. biol. Sci. 20, 927-40.
- FLENTJE, N. T., STRETTON, H. M., and HAWN, E. J. (1963).—Nuclear distribution and behaviour throughout the life cycles of *Thanatephorus*, *Waitea*, and *Ceratobasidium* species. Aust. J. biol. Sci. 16, 450-67.
- HRUSHOVETZ, S. B. (1956).—Cytological studies of Helminthosporium sativum. Can. J. Bot. 34, 321-7.
- ROBINOW, C. F. (1945).—Nuclear apparatus and cell structure of rod-shaped bacteria. Appendix to "The Bacterial Cell" by R. J. Dubos. pp. 355–77. (Harvard Univ. Press.)
- SNYDER, W. C., and HANSEN, H. N. (1940).—The species concept in *Fusarium*. Am. J. Bot. 27, 64-7.
- SNYDER, W. C., and HANSEN, H. N. (1941).—The species concept in *Fusarium* with reference to section Martiella. Am. J. Bot. 28, 738-42.
- SNYDER, W. C., and HANSEN, H. N. (1945).—The species concept in *Fusarium* with reference to Discolor and other sections. *Am. J. Bot.* **32**, 657–66.

WOLLENWEBER, H. W., and REINKING, O. A. (1935).—"Die Fusarien." (Paul Parey: Berlin.)

