AUSTRALIAN JOURNAL
 OF

BIOLOGICAL SCIENCES

VOLUME 24

AUSTRALIAN JOURNAL OF BIOLOGIGAL SGIENGES

A medium for the publication of results of original scientific research in the biological sciences with special emphasis on the experimental phases.
Published by the Commonwealth Scientific and Industrial Research Organization. Issued six times a year, \$A6 per annum.

BOARD OF STANDARDS

The Board of Standards for this Journal is appointed by the Commonwealth Scientific and Industrial Research Organization and the Australian Academy of Science and consists of Professor C. W. Emmens (Chairman), Mr. A. E. Scott (Editor-in-Chief until 31 August 1971), Mr. B. J. Walby (Editor-in-Chief from 1 September 1971), Professor D. G. Catcheside, Professor C. M. Donald, Dr. S. D. Hamann, and Professor C. B. O. Mohr.

ADVISORY COMMITTEE

Acceptance of papers for this Journal is in the hands of an Advisory Committee appointed by the Board of Standards and consisting of Mr. A. E. Scott (Editor-in-Chief and Chairman until 31 August 1971), Mr. B. J. Walby (Editor-in-Chief and Chairman from 1 September 1971), Professor C. W. Emmens, Dr. L. T. Evans, Professor F. J. R. Hird, Dr. I. G. Jarrett, and Professor M. G. Pitman.

All enquiries and manuscripts should be forwarded to:
The Editor-in-Chief, Editorial and Publications Section, CSIRO, Sixth Floor, 372 Albert Street, East Melbourne, Victoria 3002

INTERNATIONAL SYSTEM OF UNITS

The Système International d'Unités (SI) was adopted by the eleventh General Conference on Weights and Measures and endorsed by the International Organization for Standardization in 1960. The system is an extension and refinement of the traditional metric system and is superior to any other in being completely coherent, rational, and comprehensive. In the system there is one, and only one, unit for each physical quantity and the product or quotient of any two SI units yields the unit of the resulting quantity; no numerical factors are involved.

The seven basic and two supplementary units on which the SI is based are listed in Table 1.

Table 1
basic and supplementary SI units

Quantity	Name of Unit	Unit
Symbol		
Length	metre	m
Mass	kilogramme	kg
Time	second	s
Electric current	ampere	A
Thermodynamic temperature	degree Kelvin	K
Luminous intensity	candela	cd
Amount of substance	mole	mol
Plane angle	radian	rad
Solid angle	steradian	sr

The basic units are defined as follows:
Metre: The metre is the length equal to $1650763 \cdot 73$ (exactly) wavelengths in a vacuum of the radiation corresponding to the transition between the energy levels $2 p_{10}$ and $5 d_{5}$ of the pure nuclide ${ }^{86} \mathrm{Kr}$.

Kilogramme: The kilogramme is the mass of the International Prototype Kilogramme which is in the custody of the Bureau International des Poids et Mesures at Sèvres, France.

Second: The second is the duration of 9192631770 periods of the radiation corresponding to the transition between the two hyperfine levels ($F=4, M_{F}=0$ and $F=3, M_{F}=0$) of the ground state of the atom of pure nuclide ${ }^{133} \mathrm{Cs}$.
Ampere: The ampere is that constant current which, if maintained in two parallel rectilinear conductors, of infinite length and of negligible circular cross-section, at a distance apart of 1 metre in a vacuum, would produce a force between the conductors equal to 2×10^{-7} newton per metre of length.
Degree Kelvin: The degree Kelvin is completely defined by the decision of the 1954 Conférence Générale to assign the value $273 \cdot 16$ degrees Kelvin (exactly) to the thermodynamic temperature at the triple point of water.
Candela: The candela, the unit of luminous intensity, is such that the luminance of a black body at the freezing point of platinum is 6×10^{5} candelas per square metre.
Mole: The mole is an amount of substance of a system which contains as many elementary units as there are carbon atoms in 0.012 kg (exactly) of the pure nuclide ${ }^{12} \mathrm{C}$. The elementary unit must be specified and may be an atom, a molecule, an ion, an electron, a photon, etc., or a specified group of such entities.

All the other necessary units can be derived from these basic units. Tables 2 and 3 list some of the derived units.

Table 2
derived SI units with special names

Physical Quantity	Name of Unit	Symbol for Unit	Definition of Unit
Energy	joule	N	$\mathrm{kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}$
Force	newton	N	$\mathrm{kg} \mathrm{~m} \mathrm{~s}^{-2}=\mathrm{J} \mathrm{~m}^{-1}$
Power	watt	W	$\mathrm{kg} \mathrm{m}{ }^{2} \mathrm{~s}^{-3}=\mathrm{J} \mathrm{s}^{-1}$
Electric charge	coulomb	C	A s ${ }^{\text {d }}$
Electric potential difference	volt	V	$\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-3} \mathrm{~A}^{-1}=\mathrm{J} \mathrm{A}^{-1} \mathrm{~s}^{-1}$
Electric resistance	ohm	Ω	$\mathrm{kg} \mathrm{m}{ }^{2} \mathrm{~s}^{-3} \mathrm{~A}^{-2}=\mathrm{V} \mathrm{A}^{-1}$
Electric capacitance	farad	F	$\mathrm{A}^{2} \mathrm{~s}^{4} \mathrm{~kg}^{-1} \mathrm{~m}^{-2}=\mathrm{Ass}^{-1}$
Magnetic flux	weber	Wb	$\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2} \mathrm{~A}^{-1}=\mathrm{V}$ s
Inductance	henry	H	$\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2} \mathrm{~A}^{-2}=\mathrm{V} \mathrm{s} \mathrm{A}^{-1}$
Magnetic flux density	tesla	T	$\mathrm{kg} \mathrm{s}^{-2} \mathrm{~A}^{-1}=\mathrm{V} \mathrm{s} \mathrm{m}^{-2}$
Luminous flux	lumen	lm	cd sr
Illumination	lux	1x	$\mathrm{cd} \mathrm{sr} \mathrm{m}^{-2}$
Frequency	hertz	Hz	s^{-1}

Table 3
other derived SI units

Physical Quantity	SI Unit	Symbol
Area Volume Density Velocity Angular velocity Acceleration Pressure Kinematic viscosity, diffusion coefficient Dynamic viscosity Electric field strength Magnetic field strength Luminance Heat capacity (specific) Thermal conductivity Surface tension	square metre cubic metre kilogramme per cubic metre metre per second radian per second metre per second squared newton per square metre square metre per second newton second per square metre volt per metre ampere per metre candela per square metre joule per kilogramme degree Kelvin watt per metre degree Kelvin joule per metre second degree Kelvin newton per metre joule per square metre	$\begin{aligned} & \mathrm{m}^{2} \\ & \mathrm{~m}^{3} \\ & \mathrm{~kg} \mathrm{~m}^{-3} \\ & \mathrm{~m} \mathrm{~s}^{-1} \\ & \mathrm{rad} \mathrm{~s}^{-1} \\ & \mathrm{~m} \mathrm{~s}^{-2} \\ & \mathrm{~N} \mathrm{~m}^{-2} \\ & \mathrm{~m}^{2} \mathrm{~s}^{-1} \\ & \mathrm{~N} \mathrm{~s} \mathrm{~m}^{-2} \\ & \mathrm{~V} \mathrm{~m}^{-1} \\ & \mathrm{~A} \mathrm{~m}^{-1} \\ & \mathrm{~cd} \mathrm{~m}^{-2} \\ & \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1} \\ & \mathrm{~W} \mathrm{~m} \\ & \mathrm{~J}^{-1} \mathrm{~K}^{-1} \\ & \mathrm{~J} \mathrm{~m}^{-1} \mathrm{~s}^{-1} \mathrm{~K}^{-1} \\ & \mathrm{~N} \mathrm{~m}^{-1} \\ & \mathrm{~J} \mathrm{~m}^{-2} \end{aligned}$

Table 6 lists a number of other units which are not part of SI and defines them exactly in terms of the basic SI units. Their use is to be progressively discouraged.

Table 6
Some common units defined exactly in terms of Si units

Physical Quantity	Name	Symbol	Definition
Length	inch	in	$2 \cdot 54 \times 10^{-2} \mathrm{~m}$
Area	acre	ac	$4046 \cdot 8564224 \mathrm{~m}^{2}$
Mass	pound (avoirdupois)	lb	$0 \cdot 45359237 \mathrm{~kg}$
Force	kilogramme-force	kgf	9.80665 N
Pressure	atmosphere	atm	$101325 \mathrm{~N} \mathrm{~m}^{-2}$
Pressure	torr	Torr	(101 325/760) $\mathrm{N} \mathrm{m}^{-2}$
Pressure	conventional millimetre of mercury	mmHg	$13.5951 \times 980 \cdot 665 \times 10^{-2} \mathrm{~N} \mathrm{~m}^{-2}$
Energy	kilowatt-hour	kW h	$3 \cdot 6 \times 10^{6} \mathrm{~J}$
Energy	thermo-chemical calorie	cal (thermochem.)	$4 \cdot 184 \mathrm{~J}$
Energy	international table calorie	$\mathrm{cal}_{\text {IT }}$	$4 \cdot 1868$ J

Some of the SI units are of inconvenient size, but the prefixes listed in Table 4 may be used to indicate fractions or multiples of the basic or derived units.

Table 4
prefixes for SI units

Fraction	Prefix	Symbol	Multiple	Prefix	Symbol
10^{-1}	deci	d	10	deka	da
10^{-2}	centi	c	10^{2}	hecto	h
10^{-3}	milli	m	10^{3}	kilo	k
10^{-6}	micro	μ	10^{6}	mega	M
10^{-9}	nano	n	10^{9}	giga	G
10^{-12}	pico	p	10^{12}	tera	T
10^{-15}	femto	f			
10^{-18}	atto	a			

Also, there are a number of familiar units which differ from the corresponding SI units only by powers of ten. They are not part of SI but will probably continue in use for some time. The list of such units in Table 5 is not exhaustive.

Table 5
NAMED UNITS Which are decimal fractions and multiples of SI units

Physical Quantity	Name	Symbol	Definition
Length	ångström	\AA	$10^{-10} \mathrm{~m}$
Length	micron	$\mu \mathrm{m}$	$10^{-6} \mathrm{~m}$
Area	hectare	ha	$10^{4} \mathrm{~m}^{2}$
Volume	litre	1	$10^{-3} \mathrm{~m}^{3}$
Mass	tonne	t	$10^{3} \mathrm{~kg}$
Mass	gramme	g	$10^{-3} \mathrm{~kg}$
Force	dyne	dyn	$10^{-5} \mathrm{~N}$
Pressure	bar	bar	$10^{5} \mathrm{~N} \mathrm{~m} \mathrm{~m}^{-2}$
Energy	erg	erg	$10^{-7} \mathrm{~J}$
Kinematic viscosity,			
diffusion coefficient	stokes	St	$10^{-4} \mathrm{~m}^{2} \mathrm{~s}^{-1}$
Dynamic viscosity	poise	P	$10^{-1} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$
Magnetic flux	maxwell	Mx	$10^{-8} \mathrm{~Wb}$
Magnetic flux density			
(magnetic induction)	gauss	G	$10^{-4} \mathrm{~Wb} \mathrm{~m}^{-2}$

