Appendices

Appendix S1. Derivation of time series of annual stage structure from the three population censuses by linear interpolation. Includes R code for extraction of projection matrix from time-series data, and Figures comparing projections using this matrix with mean and 95% CI of actual data.

Regression equations derived from 1980 and 2008 census data

- Sapling 1: \(y = 0.7228x + 14.377 \) (\(R^2 = 0.0698 \))
- Sapling 2: \(y = 0.2346x + 0.8242 \) (\(R^2 = 0.1134 \))
- Adult: \(y = 0.1428x + 7.326 \) (\(R^2 = 0.1176 \))

These equations were used to generate a time series of population structure spanning 29 years. This data was used as input to extract the pattern-derived projection matrix using Wood’s quadratic programming method, using the following script in R.

```r
## Acacia peuce - Pattern-derived matrix & analyses
## Script author: S. Raghu

## Analysis of Acacia peuce census data using Wood's quadratic programming
## method (see Caswell 2001: 144–149)

## Executing this script requires R packages 'popbio'
## (Stubben and Milligan 2007) and 'quadprog' to be installed
## on your computer.
require(popbio)
require(quadprog)

## Using density data (abundance/ha) recorded at 3 points in time
## (1980, 2001, 2008), a regression was constructed for each stage (S1,S2,A)
## Stage-specific regression was used to generate an annual time series
## spanning 1980-2008 resulting in the following data in the form of a
## stage-specific, time series vector
c(0.63,0.87,1.12,1.36,1.60,1.84,2.09,2.33,2.57,2.82,3.06,3.30,3.54,3.79,4.03,4.27,4.51,4.76,5.00,5.24,5.49,5.73,5.97,6.21,6.46,6.70,6.94,7.19,7.43),
c(7.21,7.39,7.57,7.75,7.93,8.11,8.29,8.47,8.65,8.83,9.01,9.19,9.37,9.55,9.73,9.91,10.09,10.27,10.45,10.64,10.82,11.00,11.18,11.36,11.54,11.72,11.90,12.08,12.26))

## List nonzero elements
nonzero<-c( 1, 2, 5, 6, 7, 9)

## Create C matrix
C<- rbind(diag(-1,6), c(1,1,0,0,0,0), c(0,0,1,1,0,0), c(0,0,0,0,0,1))

## Calculate b
b<-apply(C, 1, max)

## Calculate projection matrix
"
A <- QPmat(peuce,C,b,nonzero)

## Life cycle analysis and analysis of asymptotic dynamics
A
eigen.analysis(A)
Fig. S1. Comparison of observed (circles) and predicted (lines) for the three stages of *Acacia peuce*. Predictions were based on the matrix estimated by quadratic programming. The observed values are means over 14 and 30 plots in 1980 and 2008 respectively; the error bars are 95% confidence intervals for those means.
Appendix S2. Derivation of lower level demographic parameters from published and unpublished sources to enable the compilation the process-derived projection matrix.

Structure of *A. peuce* life-history (annual time-step)
**Seedbank**
Definition: Seeds in the soil. Short-lived (no more than 2 years from production)

*Parameters* (Source: Nano et al. in prep)
Viability of seeds in seedbank ($V_{SB}$) = 0.225
Viability of fresh seeds ($V_{Seeds}$) = 0.825
Germination rate ($g$) = 0.9725

*Annual Transition rates*
$SB \rightarrow S = V_{SB} \times g$
$A \rightarrow SB = f \times V_{Seeds} \times (1 - g)$

**Seedling**
Definition: Individuals in the establishment phase (first year) when they are still relying on their seed resources.

*Derivation of parameters*
Survival rate ($S_S$) is a function of soil moisture, which in turn is dependent on rainfall. These were determined from a lab-based germination trial (Nano et al. in prep)
If soil moisture is low (equivalent of rainfall ≤ 250mm),
$S_S = 0$
If soil moisture is high (equivalent of rainfall >250mm)
$S_S = 0.90$
Individuals cannot remain in the Seedling stage beyond 1 year, by definition. Therefore, by definition, survival rate = transition rate.

*Annual Transition rates*
$S \rightarrow S1 = S_S$
$S \rightarrow S = $ not possible by definition

The presence of a seedling stage in the model would invoke a false lag by one year for seeds produced in a given year but are capable of germinating in the subsequent year. Therefore, seedling survival to S1 stage has been incorporated into a direct transition from adults to S1.

Survival and transition parameters for Sapling 1, Sapling 2 and Adult stages were calculated as per Birt et al. (2009), where the probability of surviving and remaining in a stage = 1-(1/stage duration), and probability of surviving and transitioning into the next a stage = (overall stage survival/stage duration)

**Sapling 1**
Definition: Individuals that are ≤2m. The assumption is that plants in this stage are investing in belowground growth (i.e. roots foraging for moisture). The 2m cut-off was chosen as this appears to be an approximate cut-off in patterns of growth rate. Based on the limited data available, growth rate of individuals below 2m appear to be slower and more variable (NRETAS – unpublished data; Deveson 1980), than for individuals above this height.

*Derivation of parameters*
Duration of entire stage (=time taken for plant to grow 200cm)
If growth rate is 2.8 cm/year, stage duration = 200/2.8 = 71.43 years
If growth rate is 10.8 cm/year, stage duration = 200/10.8 = 18.52 years
If growth rate is 28.57 cm/year, stage duration = 200/28.57 = 7.00 years
If growth rate is 30 cm/year, stage duration = 6.66 years
Survival rate for Sapling 1 stage ($S_{S1}$) = 0.95 (⇒ stage mortality rate = 0.05)

**Annual Transition rates**
If growth rate is 2.8 cm/year,
$S1 \rightarrow S2 = 0.95/71.43 = 0.0133$
$S1 \rightarrow S1 = 1 - (1/71.43) = 0.9860$
S1 mortality rate = 1 - ($S1 \rightarrow S2$) - ($S1 \rightarrow S1$) = 0.0007
If growth rate is 10.8 cm/year,
$S1 \rightarrow S2 = 0.95/18.52 = 0.0513$
$S1 \rightarrow S1 = 1 - (1/18.52) = 0.9460$
S1 mortality rate = 1 - ($S1 \rightarrow S2$) - ($S1 \rightarrow S1$) = 0.0027
If growth rate is 28.57 cm/year,
$S1 \rightarrow S2 = 0.95/7 = 0.1357$
$S1 \rightarrow S1 = 1 - (1/7) = 0.8571$
S1 mortality rate = 1 - ($S1 \rightarrow S2$) - ($S1 \rightarrow S1$) = 0.0071
If growth rate is 30 cm/year,
$S1 \rightarrow S2 = 0.95/6.66 = 0.1426$
$S1 \rightarrow S1 = 1 - (1/6.66) = 0.8498$
S1 mortality rate = 1 - ($S1 \rightarrow S2$) - ($S1 \rightarrow S1$) = 0.0075

$A \rightarrow S1 = f^v V_{Seeds} g^* S_S$

**Sapling 2**
Definition: Individuals that are ≥2m and ≤4m; representative of a stage whose roots that has found the water table and returns to investment in aboveground growth towards reproductive maturity. Still with immature foliage and non-reproductive.

**Derivation of parameters**
Duration of entire stage (=time taken for plant to grow 200cm)
If growth rate is 24 cm/year, stage duration = 200/24 = 8.33 years
If growth rate is 30 cm/year, stage duration = 6.66 years
Survival rate for Sapling 2 stage ($S_{S2}$) = 0.95 (⇒ stage mortality rate = 0.05)

**Annual Transition rates**
If growth rate is 24/years,
$S1 \rightarrow S2 = 0.95/8.33 = 0.1140$
$S1 \rightarrow S1 = 1 - (1/8.33) = 0.8860$
S1 mortality rate = 1 - ($S1 \rightarrow S2$) - ($S1 \rightarrow S1$) = 0.0060
If growth rate is 30 cm/year,
$S1 \rightarrow S2 = 0.95/6.66 = 0.1426$
$S1 \rightarrow S1 = 1 - (1/6.66) = 0.8498$
S1 mortality rate = 1 - ($S1 \rightarrow S2$) - ($S1 \rightarrow S1$) = 0.0075

$S1 \rightarrow S1 = S_{S1}$
$S1 \rightarrow S2 = S_{S1S2}$
**Adult**
Definition: Individuals that are >4m; reproductive with adult foliage. The 4m cut-off was chosen because this appears to be the height at which individuals first appear to have pods (Deveson 1980, Chuk 1982).

Age estimates for individuals at ~height of 18m by Jon Luly (JCU; pers. comm) are at least 200 years. Some have argued that they can live up to 500 years. Taking these into account an average adult longevity of 200 years seems a reasonable guesstimate.

Annual survival rate of individuals in this stage is very high and was thought to be close to 95%

**Derivation of parameters**
Duration of entire stage = 200 years
Survival rate for Adult stage ($S_A$) = 0.95 ($\Rightarrow$ stage mortality rate = 0.05)

**Annual Transition rates**
$A \rightarrow A = 1-(1/200) = 0.9950$
A mortality rate = $1-(A \rightarrow A) = 0.0050$

$A \rightarrow A = S_A$
Appendix S3. R Code for deterministic perturbation analyses

```r
Acacia peuce - Process-derived matrix & analyses
Script author: S. Raghu
Analysis exploring the elasticity of lambda to variation in lower
level demographic parameters; formula from Caswell (2001: eq. 9.101);
Adapted from MATLAB code of Davis et al. (2006) (Supplement: A016-076-S1)

Executing this script requires R packages ‘popbio’
(Stubben and Milligan 2007) to be installed and loaded for the session.
An error message will be returned if these are not part of the R library
on your computer.
require(popbio)

Analysis 2.1. Parameter of interest = f = seeds/adult
require(popbio)

Initialization of projection matrix
A<-matrix(c(0,0,0,0, 0,0,0,0, 0,0,0,0),nrow=4, ncol=4,
 dimnames = list(c("SB", "S1", "S2", "A"), c("SB", "S1", "S2", "A")))

Initialization of lower level parameters
f<-10
Vseeds<-0.8250
Vsb<-0.2250
g<-0.9725
Ss<-0.1000
Ss1<-0.9097
Ss2<-0.0857
Ss2a<-0.1283
Sa<-0.9950

Initializing lower-level parameter of interest for variable rate scenario
f<-200
max_f<-200
min_f<-2
step_f=(max_f-min_f)/100

Initialization of counter variable to assist with iteration
and storing of simulation output in array
i<-101

Initialization of array for storing of simulation output
ElastOut_f<-matrix(data=NA,nrow=i, ncol=12)
ElastOut_f[iis.na(ElastOut_f) <- 0

while (i > 0) {
 # Computation of projection matrix elements from lower level parameters
 # Proportion of seed rain that enters the seedbank
 A[1,4]<-f*Vseeds*(1-g)
 # Proportion of seedbank that germinates and survives to become Sapling 1
 A[2,1]<-Vsb*g*Ss
 # Proportion of seedrains that germinates and survives to become Sapling 1
 A[2,4]<-f*Vseeds*g*Ss
 # Survival of Sapling 1 remaining in stage
 A[2,2]<-Ss1
```
## Survival of Sapling 1 transitioning to Sapling 2 stage
\[ A[3,2] \rightarrow Ss1s2 \]
## Survival of Sapling 2 remaining in stage
\[ A[3,3] \rightarrow Ss2 \]
## Survival of Sapling 2 transitioning to Adult stage
\[ A[4,3] \rightarrow Ss2a \]
## Survival of Adults remaining in stage
\[ A[4,4] \rightarrow Sa \]
## Computation of lambda and matrices of sensitivities & elasticities
### for the projection matrix (\( A \))
\[ L \leftarrow \text{lambda}(A) \]
\[ \text{SensA} \leftarrow \text{sensitivity}(A) \]
\[ \text{ElastA} \leftarrow \text{elasticity}(A) \]
## Calculating elasticities to lower level parameters by
### solving the partial for each \( a_{ij} \) with respect to
### lower level parameter of interest
## Calculating elasticities of lambda to lower level parameters
### (solving partial for each \( a_{ij} \) with respect
### to lower level demographic parameter of interest
## Value of variable for simulation
\[ \text{ElastOut} \mid f[i,1] \leftarrow f \]
### Elasticity with respect to \( f \)
\[ \text{ElastOut} \mid f[i,2] \leftarrow ((f/L) \times ((\text{SensA}[1,4] \times \text{Vseeds} \times (1-g)) + (\text{SensA}[2,4] \times \text{Vseeds} \times g \times \text{Ss})) \]
### Elasticity with respect to \( \text{Vseeds} \)
\[ \text{ElastOut} \mid f[i,3] \leftarrow ((\text{Vseeds}/L) \times ((\text{SensA}[1,4] \times f \times (1-g)) + (\text{SensA}[2,4] \times f \times g \times \text{Ss})) \]
### Elasticity with respect to \( \text{Vsb} \)
\[ \text{ElastOut} \mid f[i,4] \leftarrow ((\text{Vsb}/L) \times ((\text{SensA}[1,4] \times \text{f} \times (1-g)) + (\text{SensA}[2,4] \times \text{f} \times \text{Vseeds} \times \text{Ss})) \]
### Elasticity with respect to \( \text{g} \)
\[ \text{ElastOut} \mid f[i,5] \leftarrow ((\text{g}/L) \times ((\text{SensA}[2,1] \times \text{Vsb} \times \text{Ss}) + (\text{SensA}[1,4] \times -f \times \text{Vseeds}) + (\text{SensA}[2,4] \times f \times \text{Vseeds} \times \text{Ss})) \]
### Elasticity with respect to \( \text{Ss} \)
\[ \text{ElastOut} \mid f[i,6] \leftarrow ((\text{Ss}/L) \times ((\text{SensA}[2,1] \times \text{Vsb} \times g) + (\text{SensA}[2,4] \times f \times \text{Vseeds} \times g)) \]
### Elasticity with respect to \( \text{Ss1} \)
\[ \text{ElastOut} \mid f[i,7] \leftarrow ((\text{Ss1}/L) \times ((\text{SensA}[2,2])) \]
### Elasticity with respect to \( \text{Ss1s2} \)
\[ \text{ElastOut} \mid f[i,8] \leftarrow ((\text{Ss1s2}/L) \times ((\text{SensA}[3,2])) \]
### Elasticity with respect to \( \text{Ss2} \)
\[ \text{ElastOut} \mid f[i,9] \leftarrow ((\text{Ss2}/L) \times ((\text{SensA}[3,3])) \]
### Elasticity with respect to \( \text{Ss2a} \)
\[ \text{ElastOut} \mid f[i,10] \leftarrow ((\text{Ss2a}/L) \times ((\text{SensA}[4,3])) \]
## Elasticity with respect to \( \text{Sa} \)
\[ \text{ElastOut} \mid f[i,11] \leftarrow ((\text{Sa}/L) \times ((\text{SensA}[4,4])) \]
### Storing lambda for each run
\[ \text{ElastOut} \mid f[i,12] \leftarrow L \]
## Changing value of lower-level parameter of interest for
### variable rate scenario
\[ f = f - \text{step}_f \]
## Changing counter
\[ i = i - 1 \]
}
colnames(ElastOut_f) <<- c("f", "E_f", "E_Vseeds", "E_Vsb", "E_g", "E_Ss", "E_Ss1", "E_Ss1s2", "E_Ss2", "E_Ss2a", "E_Sa", "L")
write.table(round(ElastOut_f,digits=6))
require(popbio)

## Analysis 2.2. Parameter of interest = Vseeds = Viability of fresh seeds

## Initialization of projection matrix

A <- matrix(c(0,0,0,0, 0,0,0,0, 0,0,0,0), nrow=4, ncol=4,
dimnames = list(c("SB", "S1", "S2", "A"), c("SB", "S1", "S2", "A")))

## Initialization of lower level parameters

f <- 10
Vseeds <- 0.8250
Vsb <- 0.2250
g <- 0.9725
Ss <- 0.1000
Ss1 <- 0.9097
Ss1s2 <- 0.0857
Ss2 <- 0.8649
Ss2a <- 0.1283
Sa <- 0.9950

## Initializing lower-level parameter of interest for variable rate scenario
Vseeds <- 0.90
max_Vseeds <- 0.90
min_Vseeds <- 0.80
step_Vseeds = (max_Vseeds - min_Vseeds) / 100

## Initialization of counter variable to assist with iteration
## and storing of simulation output in array
i <- 101

## Initialization of array for storing of simulation output
ElastOut_Vseeds <- matrix(data=NA, nrow=i, ncol=12)
ElastOut_Vseeds[is.na(ElastOut_Vseeds)] <- 0

while (i > 0) {
    ## Computation of projection matrix elements from lower level parameters
    ## Proportion of seed rain that enters the seedbank
    A[1,4] <- f * Vseeds * (1 - g)
    ## Proportion of seedbank that germinates and survives to become Sapling 1
    A[2,1] <- Vsb * g * Ss
    ## Proportion of seedrain that germinates and survives to become Sapling 1
    A[2,4] <- f * Vseeds * g * Ss
    ## Survival of Sapling 1 remaining in stage
    A[2,2] <- Ss1
    ## Survival of Sapling 1 transitioning to Sapling 2 stage
    A[3,2] <- Ss1s2
    ## Survival of Sapling 2 remaining in stage
    A[3,3] <- Ss2
    ## Survival of Sapling 2 transitioning to Adult stage
    A[4,3] <- Ss2a
    ## Survival of Adults remaining in stage
    A[4,4] <- Sa
    ## Computation of lambda and matrices of sensitivities & elasticities
    ## for the projection matrix (A)
    L <- lambda(A)
    SensA <- sensitivity(A)
    ElastA <- elasticity(A)

    ## Calculating elasticities to lower level parameters by
    ## solving the partial for each aij with respect to
}
## lower level parameter of interest
## Calculating elasticities of lambda to lower level parameters
## (solving partial for each aij with respect to lower level demographic parameter of interest

## Value of variable for simulation
ElastOut_Vseeds[i,1]<-Vseeds

## Elasticity with respect to f
ElastOut_Vseeds[i,2]<-(f/L)*((SensA[1,4]*Vseeds*(1-g))+(SensA[2,4]*Vseeds*g*Ss))

## Elasticity with respect to Vseeds
ElastOut_Vseeds[i,3]<-(Vseeds/L)*((SensA[1,4]*f*(1-g))+(SensA[2,4]*f*g*Ss))

## Elasticity with respect to Vsb
ElastOut_Vseeds[i,4]<-(Vsb/L)*(SensA[2,1]*g*Ss)

## Elasticity with respect to g
ElastOut_Vseeds[i,5]<-(g/L)*((SensA[2,1]*Vsb*Ss)+(SensA[1,4]*f*Vseeds)+(SensA[2,4]*f*Vseeds*Ss))

## Elasticity with respect to Ss
ElastOut_Vseeds[i,6]<-(Ss/L)*((SensA[2,1]*Vsb*Ss)+(SensA[2,4]*f*Vseeds*g))

## Elasticity with respect to Ss1
ElastOut_Vseeds[i,7]<-(Ss1/L)*(SensA[2,2])

## Elasticity with respect to Ss2
ElastOut_Vseeds[i,8]<-(Ss2/L)*(SensA[3,2])

## Elasticity with respect to Ss2a
ElastOut_Vseeds[i,9]<-(Ss2a/L)*(SensA[4,3])

## Elasticity with respect to Sa
ElastOut_Vseeds[i,10]<-(Sa/L)*(SensA[4,4])

## Elasticity with respect to Sa
ElastOut_Vseeds[i,11]<-(Sa/L)*(SensA[4,4])

## Storing lambda for each run
ElastOut_Vseeds[i,12]<-L

## Changing value of lower-level parameter of interest for
## variable rate scenario
Vseeds=Vseeds-step_Vseeds

## Changing counter
i=i-1

colnames(ElastOut_Vseeds)<- c("Vseeds", "E_f", "E_Vseeds", "E_Vsb", "E_g", "E_Ss", "E_Ss1", "E_Ss1s2", "E_Ss2", "E_Ss2a", "E_Sa", "L")
write.table(round(ElastOut_Vseeds,digits=6))

##########################################################################
## Analysis 2.3. Parameter of interest = Vsb = Viability of seeds in seedbank
## Initialization of projection matrix
require(popbio)
A<-matrix(c(0,0,0,0, 0,0,0,0, 0,0,0,0),nrow=4, ncol=4,
dimnames = list(c("SB", "S1", "S2", "A")), c("SB", "S1", "S2", "A")))

## Initialization of lower level parameters
f<-10
Vseeds<-0.8250
Vsb<-0.2250
g<-0.9725
Ss<-0.1000
Ss1<-0.9097
Ss2a<-0.0857
## Initializing lower level parameter of interest for variable rate scenario

\[
\begin{align*}
S_s^2 &< 0.8649 \\
S_s^{2a} &< 0.1283 \\
S_s &< 0.9950
\end{align*}
\]

## Initialization of counter variable to assist with iteration

## and storing of simulation output in array

\[
i < 101
\]

## Initialization of array for storing of simulation output

\[
\text{ElastOut}_{Vsb} \leftarrow \begin{pmatrix}
\text{data}=\text{NA}, \text{nrow}=i, \text{ncol}=12
\end{pmatrix}
\]

while (i > 0) {
  ## Computation of projection matrix elements from lower level parameters
  ## Proportion of seed rain that enters the seedbank
  \[
  A[1,4] \leftarrow f \cdot Vseeds \cdot (1 - g)
  \]
  ## Proportion of seedbank that germinates and survives to become Sapling 1
  \[
  A[2,1] \leftarrow Vsb \cdot g \cdot S_s
  \]
  ## Proportion of seedrain that germinates and survives to become Sapling 1
  \[
  A[2,4] \leftarrow f \cdot Vseeds \cdot g \cdot S_s
  \]
  ## Survival of Sapling 1 remaining in stage
  \[
  A[2,2] \leftarrow S_s 1
  \]
  ## Survival of Sapling 1 transitioning to Sapling 2 stage
  \[
  A[3,2] \leftarrow S_s 1 s2
  \]
  ## Survival of Sapling 2 remaining in stage
  \[
  A[3,3] \leftarrow S_s 2
  \]
  ## Survival of Sapling 2 transitioning to Adult stage
  \[
  A[4,3] \leftarrow S_s 2 a
  \]
  ## Survival of Adults remaining in stage
  \[
  A[4,4] \leftarrow S_a
  \]
  ## Computation of lambda and matrices of sensitivities & elasticities
  ## for the projection matrix (A)
  \[
  L \leftarrow \text{lambda}(A)
  \]
  \[
  \text{SensA} \leftarrow \text{sensitivity}(A)
  \]
  \[
  \text{ElastA} \leftarrow \text{elasticity}(A)
  \]
  ## Calculating elasticities to lower level parameters by
  ## solving the partial for each aij with respect to
  ## lower level parameter of interest
  ## Calculating elasticities of lambda to lower level parameters
  ## (solving partial for each aij with respect
  ## to lower level demographic parameter of interest

  ## Value of variable for simulation
  \[
  \text{ElastOut}_{Vsb}[i,1] \leftarrow Vsb
  \]
  ## Elasticity with respect to f
  \[
  \text{ElastOut}_{Vsb}[i,2] \leftarrow \frac{f}{L} \cdot ((\text{SensA}[1,4] \cdot Vseeds \cdot (1 - g)) + (\text{SensA}[2,4] \cdot Vseeds \cdot g \cdot S_s))
  \]
  ## Elasticity with respect to Vseeds
  \[
  \text{ElastOut}_{Vsb}[i,3] \leftarrow \frac{Vseeds}{L} \cdot ((\text{SensA}[1,4] \cdot f \cdot (1 - g)) + (\text{SensA}[2,4] \cdot f \cdot g \cdot S_s))
  \]
  ## Elasticity with respect to Vsb
  \[
  \text{ElastOut}_{Vsb}[i,4] \leftarrow \frac{Vsb}{L} \cdot ((\text{SensA}[2,1] \cdot g \cdot S_s)
  \]
  ## Elasticity with respect to g
}
ElastOut_Vsb[i,5]<-(g/L)*((SensA[2,1]*Vsb*Ss)+(SensA[2,4]*f*Vseeds*g)+(SensA[1,4]*f*Vseeds*Ss))
## Elasticity with respect to Ss
ElastOut_Vsb[i,6]<-((Ss/L)*((SensA[2,1]*Vsb*g)+(SensA[2,4]*f*Vseeds*g))
## Elasticity with respect to Ss1
ElastOut_Vsb[i,7]<-((Ss1/L)*(SensA[2,2]))
## Elasticity with respect to Ss1s2
ElastOut_Vsb[i,8]<-((Ss1s2/L)*(SensA[3,2]))
## Elasticity with respect to Ss2
ElastOut_Vsb[i,9]<-((Ss2/L)*(SensA[3,3]))
## Elasticity with respect to Ss2a
ElastOut_Vsb[i,10]<-((Ss2a/L)*(SensA[4,3]))
## Elasticity with respect to Sa
ElastOut_Vsb[i,11]<-((Sa/L)*(SensA[4,4]))
## Storing lambda for each run
ElastOut_Vsb[i,12]<-L

## Changing value of lower-level parameter of interest for
## variable rate scenario
Vsb=Vsb-step_Vsb

## Changing counter
i=i-1

colnames(ElastOut_Vsb)<-c("Vsb", "E_f", "E_Vseeds", "E_Vsb", "E_g", "E_Ss", "E_Ss1", "E_Ss1s2", "E_Ss2", "E_Ss2a", "E_Sa", "L")
write.table(round(ElastOut_Vsb,digits=6))

##########################################################################
## Analysis 2.4. Parameter of interest = g = germination rate
require(popbio)
## Initialization of projection matrix
A<-matrix(c(0,0,0,0, 0,0,0,0, 0,0,0,0),nrow=4, ncol=4,
dimnames = list(c("SB", "S1", "S2", "A"), c("SB", "S1", "S2", "A")))

## Initialization of lower level parameters
t<-10
Vseeds<-0.8250
Vsb<-0.2250
g<-0.9725
Ss<-0.1000
Ss1<-0.9097
Ss1s2<-0.0857
Ss2<-0.8649
Ss2a<-0.1283
Sa<-0.9950

## Initializing lower-level parameter of interest for variable rate scenario
g<-1.00
max_g<-1.00
min_g<-0.95
step_g=(max_g-min_g)/100

## Initialization of counter variable to assist with iteration
## and storing of simulation output in array
i<-101
## Initialization of array for storing of simulation output
ElastOut_g<-matrix(data=NA,nrow=i, ncol=12)
ElastOut_g[is.na(ElastOut_g)] <- 0
while (i > 0) {

    # Computation of projection matrix elements from lower level parameters
    # Proportion of seed rain that enters the seedbank
    A[1,4] <- f*Vseeds*(1-g)
    # Proportion of seedbank that germinates and survives to become Sapling 1
    A[2,1] <- Vsb*g*Ss
    # Proportion of seed rain that germinates and survives to become Sapling 1
    A[2,4] <- f*Vseeds*g*Ss
    # Survival of Sapling 1 remaining in stage
    A[2,2] <- Ss
    # Survival of Sapling 1 transitioning to Sapling 2 stage
    A[3,2] <- Ss1
    # Survival of Sapling 2 remaining in stage
    A[3,3] <- Ss2
    # Survival of Sapling 2 transitioning to Adult stage
    A[4,3] <- Ss2a
    # Survival of Adults remaining in stage
    A[4,4] <- Sa

    # Computation of lambda and matrices of sensitivities & elasticities
    # for the projection matrix (A)
    L <- lambda(A)
    SensA <- sensitivity(A)
    ElastA <- elasticity(A)

    # Calculating elasticities to lower level parameters by
    # solving the partial for each aij with respect to
    # lower level parameter of interest
    # Calculating elasticities of lambda to lower level parameters
    # (solving partial for each aij with respect
    # to lower level demographic parameter of interest

    # Value of variable for simulation
    ElastOut_g[i,1] <- g

    # Elasticity with respect to f
    ElastOut_g[i,2] <- (f/L)*(SensA[1,4]*Vseeds*(1-g)) +
                     (SensA[2,4]*Vseeds*g*Ss)
    # Elasticity with respect to Vseeds
    ElastOut_g[i,3] <- (Vseeds/L)*(SensA[1,4]*f*(1-g)) +
                     (SensA[2,4]*f*g*Ss)
    # Elasticity with respect to Vsb
    ElastOut_g[i,4] <- (Vsb/L)*(SensA[2,1]*g*Ss)
    # Elasticity with respect to g
    ElastOut_g[i,5] <- (g/L)*(SensA[2,1]*Vsb*Ss)+(SensA[1,4]*f*Vseeds)+
                     (SensA[2,4]*f*Vseeds*Ss)
    # Elasticity with respect to Ss
    ElastOut_g[i,6] <- (Ss/L)*(SensA[2,1]*Vsb*g)+(SensA[2,4]*f*Vseeds*g))
    # Elasticity with respect to Ss1
    ElastOut_g[i,7] <- (Ss1/L)*(SensA[2,2])
    # Elasticity with respect to Ss1s2
    ElastOut_g[i,8] <- (Ss1s2/L)*(SensA[3,2])
    # Elasticity with respect to Ss2
    ElastOut_g[i,9] <- (Ss2/L)*(SensA[3,3])
    # Elasticity with respect to Ss2a
    ElastOut_g[i,10] <- (Ss2a/L)*(SensA[4,3])
    # Elasticity with respect to Sa
    ElastOut_g[i,11] <- (Sa/L)*(SensA[4,4])
    # Storing lambda for each run
    ElastOut_g[i,12] <- L
## Changing value of lower-level parameter of interest for variable rate scenario

g=g-step_g

## Changing counter

i=i-1

```r
colnames(ElastOut_g)<- c("g", "E_f", "E_Vseeds", "E_Vsb", "E_g", "E_Ss", "E_Ss1", "E_Ss1s2", "E_Ss2", "E_Ss2a", "E_Sa", "L")
write.table(round(ElastOut_g,digits=6))
```

##########################################################################
## Analysis 2.5. Parameter of interest = Ss = seedling survival

```r
require(popbio)
Initialization of projection matrix
A<-matrix(c(0,0,0,0, 0,0,0,0, 0,0,0,0),nrow=4, ncol=4, dimnames = list(c("SB", "S1", "S2", "A"), c("SB", "S1", "S2", "A")))
Initialization of lower level parameters
f<-10
Vseeds<-0.8250
Vsb<-0.2250
g<-0.9725
Ss<-0.1000
Ss1<-0.9097
Ss1s2<-0.0857
Ss2<-0.8649
Ss2a<-0.1283
Sa<-0.9950
```

## Initializing lower-level parameter of interest for variable rate scenario

```r
Ss<-0.90
max_Ss<-0.90
min_Ss<-0.0
step_Ss=(max_Ss-min_Ss)/100
```

## Initialization of counter variable to assist with iteration

```r
and storing of simulation output in array
i<-101
Initialization of array for storing of simulation output
ElastOut_Ss<-matrix(data=NA,nrow=i, ncol=12)
ElastOut_Ss[is.na(ElastOut_Ss)] <- 0
```

while (i > 0) {

```r
Computation of projection matrix elements from lower level parameters
Proportion of seed rain that enters the seedbank
A[1,4]<-f*Vseeds*(1-g)
Proportion of seedbank that germinates and survives to become Sapling 1
A[2,1]<-Vsb*g*Ss
Proportion of seedrain that germinates and survives to become Sapling 1
A[2,4]<-f*Vseeds*g*Ss
Survival of Sapling 1 remaining in stage
A[2,2]<-Ss1
Survival of Sapling 1 transitioning to Sapling 2 stage
A[3,2]<-Ss1s2
Survival of Sapling 2 remaining in stage
A[3,3]<-Ss2
Survival of Sapling 2 transitioning to Adult stage
A[4,3]<-Ss2a
Survival of Adults remaining in stage
```

## Computation of lambda and matrices of sensitivities & elasticities
## for the projection matrix (A)

L <- lambda(A)
SensA <- sensitivity(A)
ElastA <- elasticity(A)

## Calculating elasticities to lower level parameters by
## solving the partial for each aij with respect to
## lower level parameter of interest
## Calculating elasticities of lambda to lower level parameters
## (solving partial for each aij with respect
## to lower level demographic parameter of interest)

## Value of variable for simulation
ElastOut_Ss[,1] <- Ss

## Elasticity with respect to f
ElastOut_Ss[,2] <- -(f/L)*((SensA[1,4]*Vseeds*(1-g)) +
(SensA[2,4]*Vseeds*g*Ss))

## Elasticity with respect to Vseeds
ElastOut_Ss[,3] <- -(Vseeds/L)*((SensA[1,4]*f*(1-g)) +
(SensA[2,4]*f*g*Ss))

## Elasticity with respect to Vsb
ElastOut_Ss[,4] <- -(Vsb/L)*((SensA[2,4]*Vseeds*g*Ss))

## Elasticity with respect to g
ElastOut_Ss[,5] <- -(g/L)*((SensA[2,4]*Vsb*Ss) +
(SensA[2,1]*g*Ss))

## Elasticity with respect to Ss
ElastOut_Ss[,6] <- -(Ss/L)*((SensA[2,4]*Vseeds*Ss) +
(SensA[2,1]*Vsb))

## Elasticity with respect to Ss1
ElastOut_Ss[,7] <- -(Ss1/L)*((SensA[2,4]*Vsb*Ss) +
(SensA[2,1]*g*Ss))

## Elasticity with respect to Ss1s2
ElastOut_Ss[,8] <- -(Ss1s2/L)*(SensA[2,1]*Vsb*Ss) +
(SensA[2,4]*Vseeds*Ss)

## Elasticity with respect to Ss2
ElastOut_Ss[,9] <- -(Ss2/L)*(SensA[2,1]*Vsb*Ss) +
(SensA[2,4]*Vseeds*Ss)

## Elasticity with respect to Ss2a
ElastOut_Ss[,10] <- -(Ss2a/L)*(SensA[2,1]*Vsb*Ss) +
(SensA[2,4]*Vseeds*Ss)

## Elasticity with respect to Sa
ElastOut_Ss[,11] <- -(Sa/L)*(SensA[2,1]*Vsb*Ss) +
(SensA[2,4]*Vseeds*Ss)

## Storing lambda for each run
ElastOut_Ss[,12] <- L

## Changing value of lower-level parameter of interest for
## variable rate scenario
Ss = Ss - step_Ss

## Changing counter
i = i - 1
}
colnames(ElastOut_Ss) <- c("Ss", "E_f", "E_Vseeds", "E_Vsb", "E_g", "E_Ss", "E_Ss1",
"E_Ss1s2", "E_Ss2", "E_Ss2a", "E_Sa", "L")
write.table(round(ElastOut_Ss,digits=6))

# Analysis 2.6. Parameter of interest = Ss1 = Sapling 1 survival & remaining
# in stage
require(popbio)
## Initialization of projection matrix
A <- matrix(c(0,0,0,0, 0,0,0,0, 0,0,0,0),nrow=4, ncol=4,
dimnames = list(c("SB", "S1", "S2", "A"), c("SB", "S1", "S2", "A"))

## Initialization of lower level parameters
f<-10
Vseeds<-0.8250
Vsb<-0.2250
g<-0.9725
Ss<-0.1000
Ss1<-0.9097
Ss1s2<-0.0857
Ss2<-0.8649
Ss2a<-0.1283
Sa<-0.9950

## Initializing lower-level parameter of interest for variable rate scenario
Ss1<-0.9097
max_Ss1<-0.9097
min_Ss1<-0.8498
step_Ss1=(max_Ss1-min_Ss1)/100

## Initialization of counter variable to assist with iteration
## and storing of simulation output in array
i<-101

## Initialization of array for storing of simulation output
ElastOut_Ss1<-matrix(data=NA,nrow=i, ncol=12)
ElastOut_Ss1[is.na(ElastOut_Ss1)] <- 0

while (i > 0) {

## Computation of projection matrix elements from lower level parameters
## Proportion of seed rain that enters the seedbank
A[1,4]<-f*Vseeds*(1-g)
## Proportion of seedbank that germinates and survives to become Sapling 1
A[2,1]<-Vsb*g*Ss
## Proportion of seedrain that germinates and survives to become Sapling 1
A[2,4]<-f*Vseeds*g*Ss
## Survival of Sapling 1 remaining in stage
A[2,2]<-Ss1
## Survival of Sapling 1 transitioning to Sapling 2 stage
A[3,2]<-Ss1s2
## Survival of Sapling 2 remaining in stage
A[3,3]<-Ss2
## Survival of Sapling 2 transitioning to Adult stage
A[4,3]<-Ss2a
## Survival of Adults remaining in stage
A[4,4]<-Sa
## Computation of lambda and matrices of sensitivities & elasticities
## for the projection matrix (A)
L<-lambda(A)
SensA<-sensitivity(A)
ElastA<-elasticity(A)

## Calculating elasticities to lower level parameters by
## solving the partial for each aij with respect to
## lower level parameter of interest
## Calculating elasticities of lambda to lower level parameters
## (solving partial for each aij with respect
## to lower level demographic parameter of interest

## Value of variable for simulation
ElastOut_Ss1[i,1]<-Ss1
## Elasticity with respect to f
ElastOut_Ss1[i,2]<-((f/L)*((SensA[1,4]*Vseeds*(1-g))+(SensA[2,4]*Vseeds*g*Ss))

## Elasticity with respect to Vseeds
ElastOut_Ss1[i,3]<-(Vseeds/L)*((SensA[1,4]*f*(1-g))+(SensA[2,4]*f*g*Ss))

## Elasticity with respect to Vsb
ElastOut_Ss1[i,4]<-(Vsb/L)*((SensA[2,1]*g*Ss))

## Elasticity with respect to g
ElastOut_Ss1[i,5]<-(g/L)*((SensA[2,1]*Vsb*Ss)+(SensA[1,4]*f*Vseeds)+(SensA[2,4]*f*Vseeds*Ss))

## Elasticity with respect to Ss
ElastOut_Ss1[i,6]<-(Ss/L)*((SensA[2,1]*Vsb*g)+(SensA[2,4]*f*Vseeds*g))

## Elasticity with respect to Ss1
ElastOut_Ss1[i,7]<-(Ss1/L)*(SensA[2,2])

## Elasticity with respect to Ss1s2
ElastOut_Ss1[i,8]<-(Ss1s2/L)*(SensA[3,2])

## Elasticity with respect to Ss2
ElastOut_Ss1[i,9]<-(Ss2/L)*(SensA[3,3])

## Elasticity with respect to Ss2a
ElastOut_Ss1[i,10]<-(Ss2a/L)*(SensA[4,3])

## Elasticity with respect to Sa
ElastOut_Ss1[i,11]<-(Sa/L)*(SensA[4,4])

## Storing lambda for each run
ElastOut_Ss1[i,12]<-L

colnames(ElastOut_Ss1)<- c("Ss1", "E_f", "E_Vseeds", "E_Vsb", "E_g", "E_Ss", "E_Ss1", 
"E_Ss1s2", "E_Ss2", "E_Ss2a", "E_Sa", "L")
write.table(round(ElastOut_Ss1,digits=6))

##########################################################################
## Analysis 2.7. Parameter of interest = Ss1s2 = Sapling 1 survival &
## transitioning to Sapling 2 in stage
require(popbio)

## Initialization of projection matrix
A<-matrix(c(0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0),nrow=4, ncol=4,
dimnames = list(c("SB", "S1", "S2", "A"), c("SB", "S1", "S2", "A")))

## Initialization of lower level parameters
f<-10
Vseeds<-0.8250
Vsb<-0.2250
g<-0.9725
Ss<-0.1000
Ss1<-0.9097
Ss1s2<-0.0857
Ss2<-0.8649
Ss2a<-0.1283
Sa<-0.9950

## Initializing lower-level parameter of interest for variable rate scenario
Ss1s2<-0.0857
max_Ss1s2<-0.0857
min_Ss1s2<-0.0133
step_Ss1s2=(max_Ss1s2-min_Ss1s2)/100

## Initialization of counter variable to assist with iteration
## and storing of simulation output in array
i<-101
## Initialization of array for storing of simulation output
ElastOut_Ss1s2<-matrix(data=NA,nrow=i, ncol=12)
ElastOut_Ss1s2[is.na(ElastOut_Ss1s2)] <- 0

while (i > 0)
{
## Computation of projection matrix elements from lower level parameters
## Proportion of seed rain that enters the seedbank
A[1,4]<-f*Vseeds*(1-g)
## Proportion of seedbank that germinates and survives to become Sapling 1
A[2,1]<-Vsb*g*Ss
## Proportion of seedrain that germinates and survives to become Sapling 1
A[2,4]<-f*Vseeds*g*Ss
## Survival of Sapling 1 remaining in stage
A[2,2]<-Ss1
## Survival of Sapling 1 transitioning to Sapling 2 stage
A[3,2]<-Ss1s2
## Survival of Sapling 2 remaining in stage
A[3,3]<-Ss2
## Survival of Sapling 2 transitioning to Adult stage
A[4,3]<-Ss2a
## Survival of Adults remaining in stage
A[4,4]<-Sa
## Computation of lambda and matrices of sensitivities & elasticities
## for the projection matrix (A)
L<-lambda(A)
SensA<-sensitivity(A)
ElastA<-elasticity(A)

## Calculating elasticities to lower level parameters by
## solving the partial for each aij with respect to
## lower level parameter of interest
## Calculating elasticities of lambda to lower level parameters
## (solving partial for each aij with respect
## to lower level demographic parameter of interest

## Value of variable for simulation
ElastOut_Ss1s2[i,1]<-Ss1s2
## Elasticity with respect to f
ElastOut_Ss1s2[i,2]<-(f/L)*((SensA[1,4]*Vseeds*(1-g))+(SensA[2,4]*Vseeds*g*Ss))
## Elasticity with respect to Vseeds
ElastOut_Ss1s2[i,3]<-(Vseeds/L)*((SensA[1,4]*f*(1-g))+(SensA[2,4]*f*g*Ss))
## Elasticity with respect to Vsb
ElastOut_Ss1s2[i,4]<-(Vsb/L)*(SensA[2,1]*Vsb*Ss)
## Elasticity with respect to g
ElastOut_Ss1s2[i,5]<-(g/L)*((SensA[2,1]*Vsb*Ss)+(SensA[1,4]*f*Vseeds)+(SensA[2,4]*f*Vseeds*Ss))
## Elasticity with respect to Ss
ElastOut_Ss1s2[i,6]<-(Ss/L)*((SensA[2,1]*Vsb*g)+(SensA[2,4]*f*Vseeds*g))
## Elasticity with respect to Ss1
ElastOut_Ss1s2[i,7]<-(Ss1/L)*(SensA[2,2])}
## Elasticity with respect to Ss1s2
ElastOut_Ss1s2[i,8]<-(Ss1s2/L)*(SensA[3,2])

## Elasticity with respect to Ss2
ElastOut_Ss1s2[i,9]<-(Ss2/L)*(SensA[3,3])

## Elasticity with respect to Ss2a
ElastOut_Ss1s2[i,10]<-(Ss2a/L)*(SensA[4,3])

## Elasticity with respect to Sa
ElastOut_Ss1s2[i,11]<-(Sa/L)*(SensA[4,4])

## Storing lambda for each run
ElastOut_Ss1s2[i,12]<-L

## Changing value of lower-level parameter of interest for variable rate scenario
Ss1s2=Ss1s2-step_Ss1s2

## Changing counter
i=i-1

} 

colnames(ElastOut_Ss1s2)<- c("Ss1s2", "E_f", "E_Vseeds", "E_Vsb", "E_g", "E_Ss", "E_Ss1", "E_Ss2", "E_Ss2a", "E_Sa", "L")
write.table(round(ElastOut_Ss1s2,digits=6))
A[2,1]<-Vsb*g*Ss
## Proportion of seedrain that germinates and survives to become Sapling 1
A[2,4]<-f*Vseeds*g*Ss
## Survival of Sapling 1 remaining in stage
A[2,2]<-Ss1
## Survival of Sapling 1 transitioning to Sapling 2 stage
A[3,2]<-Ss1s2
## Survival of Sapling 2 remaining in stage
A[3,3]<-Ss2
## Survival of Sapling 2 transitioning to Adult stage
A[4,3]<-Ss2a
## Survival of Adults remaining in stage
A[4,4]<-Sa
## Computation of lambda and matrices of sensitivities & elasticities
## for the projection matrix (A)
L<-lambda(A)
SensA<-sensitivity(A)
ElastA<-elasticity(A)

## Calculating elasticities to lower level parameters by
## solving the partial for each aij with respect to
## lower level parameter of interest
## Calculating elasticities of lambda to lower level parameters
## (solving partial for each aij with respect
## to lower level demographic parameter of interest)

## Value of variable for simulation
ElastOut_Ss2[i,1]<-Ss2

## Elasticity with respect to f
ElastOut_Ss2[i,2]<-((f/L)*((SensA[1,4]*Vseeds*(1-g))+(SensA[2,4]*Vseeds*g*Ss)))
## Elasticity with respect to Vseeds
ElastOut_Ss2[i,3]<-((Vseeds/L)*((SensA[1,4]*f*(1-g))+(SensA[2,4]*f*g*Ss)))
## Elasticity with respect to Vsb
ElastOut_Ss2[i,4]<-((Vsb/L)*((SensA[2,1]*Vsb*Ss)+(SensA[2,4]*f*Vseeds*Ss)))
## Elasticity with respect to Ss
ElastOut_Ss2[i,5]<-((Ss/L)*((SensA[2,1]*Vsb*Ss)+(SensA[2,4]*f*Vseeds*Ss)))
## Elasticity with respect to Ss1
ElastOut_Ss2[i,6]<-((Ss1/L)*((SensA[2,1]*Vsb*Ss)+(SensA[2,4]*f*Vseeds*Ss)))
## Elasticity with respect to Ss1s2
ElastOut_Ss2[i,7]<-((Ss1s2/L)*((SensA[3,2])))
## Elasticity with respect to Ss2
ElastOut_Ss2[i,8]<-((Ss2/L)*((SensA[3,2])))
## Elasticity with respect to Ss2a
ElastOut_Ss2[i,9]<-((Ss2a/L)*((SensA[4,3]))
## Elasticity with respect to Sa
ElastOut_Ss2[i,10]<-((Sa/L)*((SensA[4,4])))
## Storing lambda for each run
ElastOut_Ss2[i,12]<-L

## Changing value of lower-level parameter of interest for
## variable rate scenario
Ss2=Ss2-step_Ss2
## Changing counter
i=i-1

colnames(ElastOut_Ss2)<- c("Ss2", "E_f", "E_Vseeds", "E_Vsb", "E_g", "E_Ss", "E_Ss1", "E_Ss1s2", "E_Ss2", "E_Ss2a", "E_Sa", "L")
write.table(round(ElastOut_Ss2,digits=6))

##########################################################################
## Analysis 2.9. Parameter of interest = Ss2a = Sapling 2 survival &
## transitioning to Adult stage
require(popbio)
## Initialization of projection matrix
A<-matrix(c(0,0,0,0, 0,0,0,0, 0,0,0,0),nrow=4, ncol=4,
dimnames = list(c("SB", "S1", "S2", "A"), c("SB", "S1", "S2", "A")))
## Initialization of lower level parameters
f<-10
Vseeds<-0.8250
Vsb<-0.2250
g<-0.9725
Ss<-0.1000
Ss1<-0.9097
Ss1s2<-0.0857
Ss2<-0.8649
Ss2a<-0.1283
Sa<-0.9950

## Initializing lower-level parameter of interest for variable rate scenario
Ss2a<-0.1283
max_Ss2a<-0.1283
min_Ss2a<-0.1140
step_Ss2a=(max_Ss2a-min_Ss2a)/100

## Initialization of counter variable to assist with iteration
## and storing of simulation output in array
i<-101
## Initialization of array for storing of simulation output
ElastOut_Ss2a<-matrix(data=NA,nrow=i, ncol=12)
ElastOut_Ss2a[is.na(ElastOut_Ss2a)] <- 0

while (i > 0) {

## Computation of projection matrix elements from lower level parameters
## Proportion of seed rain that enters the seedbank
A[1,4]<-f*Vseeds*(1-g)
## Proportion of seedbank that germinates and survives to become Sapling 1
A[2,1]<-Vsb*g*Ss
## Proportion of seedrain that germinates and survives to become Sapling 1
A[2,4]<-f*Vseeds*g*Ss
## Survival of Sapling 1 remaining in stage
A[2,2]<-Ss1
## Survival of Sapling 1 transitioning to Sapling 2 stage
A[3,2]<-Ss1s2
## Survival of Sapling 2 remaining in stage
A[3,3]<-Ss2
## Survival of Sapling 2 transitioning to Adult stage
A[4,3]<-Ss2a
## Survival of Adults remaining in stage
A[4,4]<-Sa
## Computation of lambda and matrices of sensitivities & elasticities
## for the projection matrix (A)
L<-lambda(A)
SensA<-sensitivity(A)
ElastA<-elasticity(A)

## Calculating elasticities to lower level parameters by
## solving the partial for each aij with respect to
## lower level parameter of interest
## Calculating elasticities of lambda to lower level parameters
## (solving partial for each aij with respect
## to lower level demographic parameter of interest)

## Value of variable for simulation
ElastOut_Ss2a[i,1]<-Ss2a

## Elasticity with respect to f
ElastOut_Ss2a[i,2]<-(b/L)*((SensA[1,4]*Vseeds*(1-g))+(SensA[2,4]*Vseeds*g*Ss))

## Elasticity with respect to Vseeds
ElastOut_Ss2a[i,3]<-(Vseeds/L)*((SensA[1,4]*f*(1-g))+(SensA[2,4]*f*g*Ss))

## Elasticity with respect to Vsb
ElastOut_Ss2a[i,4]<-(Vsb/L)*((SensA[2,1]*g*Ss))

## Elasticity with respect to g
ElastOut_Ss2a[i,5]<-(g/L)*((SensA[2,1]*Vsb*Ss)+(SensA[1,4]*f*Vseeds)+(SensA[2,4]*f*Vseeds*Ss))

## Elasticity with respect to Ss
ElastOut_Ss2a[i,6]<-(Ss/L)*((SensA[2,1]*Vsb*g)+(SensA[2,4]*f*Vseeds*g))

## Elasticity with respect to Ss1
ElastOut_Ss2a[i,7]<-(Ss1/L)*((SensA[2,2]))

## Elasticity with respect to Ss1s2
ElastOut_Ss2a[i,8]<-(Ss1s2/L)*((SensA[3,2]))

## Elasticity with respect to Ss2
ElastOut_Ss2a[i,9]<-(Ss2/L)*((SensA[3,3]))

## Elasticity with respect to Sa
ElastOut_Ss2a[i,10]<-(Ss2a/L)*((SensA[4,3]))

## Elasticity with respect to Ss2a
ElastOut_Ss2a[i,11]<-(Ss2a/L)*(SensA[4,4])

## Storing lambda for each run
ElastOut_Ss2a[i,12]<-L

## Changing value of lower-level parameter of interest for
## variable rate scenario
Ss2a=Ss2a-step_Ss2a

## Changing counter
i=i-1

colnames(ElastOut_Ss2a)<- c("Ss2a", "E_f", "E_Vseeds", "E_Vsb", "E_g", "E_Ss", "E_Ss1", 
"E_Ss1s2", "E_Ss2", "E_Ss2a", "E_Sa", "L")
write.table(round(ElastOut_Ss2a,digits=6))

##########################################################################
## Analysis 2.10. Parameter of interest = Sa = Sapling 2 survival &
## transitioning to Adult stage
require(popbio)

## Initialization of projection matrix
A<-matrix(c(0,0,0,0, 0,0,0,0, 0,0,0,0),ncol=4, row=4, 
dimnames = list(c("SB", "S1", "S2", "A"), c("SB", "S1", "S2", "A")))

## Initialization of lower level parameters
f<-10
Vseeds<-0.8250  
Vsb<-0.2250   
g<-0.9725   
Ss<-0.1000  
Ss1<-0.9097  
Ss1s2<-0.0857  
Ss2<-0.8649  
Ss2a<-0.1283  
Sa<-0.9950

## Initializing lower-level parameter of interest for variable rate scenario
Sa<-1.00  
max_Sa<-1.00  
min_Sa<-0.95  
step_Sa=(max_Sa-min_Sa)/100

## Initialization of counter variable to assist with iteration  
## and storing of simulation output in array
i<-101  
## Initialization of array for storing of simulation output
ElastOut_Sa<-matrix(data=NA,nrow=i, ncol=12)  
ElastOut_Sa[is.na(ElastOut_Sa)] <- 0

while (i > 0) {
    ## Computation of projection matrix elements from lower level parameters
    ## Proportion of seed rain that enters the seedbank
    A[1,4]<-f*Vseeds*(1-g)  
    ## Proportion of seedbank that germinates and survives to become Sapling 1
    A[2,1]<-Vsb*g*Ss  
    ## Proportion of seedrain that germinates and survives to become Sapling 1
    A[2,4]<-f*Vseeds*g*Ss  
    ## Survival of Sapling 1 remaining in stage
    A[2,2]<-Ss1  
    ## Survival of Sapling 1 transitioning to Sapling 2 stage
    A[3,2]<-Ss1s2  
    ## Survival of Sapling 2 remaining in stage
    A[3,3]<-Ss2  
    ## Survival of Sapling 2 transitioning to Adult stage
    A[4,3]<-Ss2a  
    ## Survival of Adults remaining in stage
    A[4,4]<-Sa  
    ## Computation of lambda and matrices of sensitivities & elasticities
    ## for the projection matrix (A)
    L<-lambda(A)  
    SensA<-sensitivity(A)  
    ElastA<-elasticity(A)

    ## Calculating elasticities to lower level parameters by
    ## solving the partial for each aij with respect to
    ## lower level parameter of interest
    ## Calculating elasticities of lambda to lower level parameters
    ## (solving partial for each aij with respect
    ## to lower level demographic parameter of interest

    ## Value of variable for simulation
    ElastOut_Sa[i,1]<-Sa

    ## Elasticity with respect to f
    ElastOut_Sa[i,2]<-(f/L)*((SensA[1,4]*Vseeds*(1-g))+
                       (SensA[2,4]*Vseeds*g*Ss))
## Elasticity with respect to Vseeds
\[
Elasticity_{Vseeds} = \frac{(Vseeds/L) \times (SensA[1,4]*f*(1-g)) + (SensA[2,4]*f*g*Ss)}{ElastOut_{Sa}[i,3]}
\]
## Elasticity with respect to Vsb
\[
Elasticity_{Vsb} = \frac{(Vsb/L) \times (SensA[2,1]*g*Ss)}{ElastOut_{Sa}[i,4]}
\]
## Elasticity with respect to g
\[
Elasticity_{g} = \frac{(g/L) \times ((SensA[2,1]*Vsb*Ss)+(SensA[1,4]*f*Vseeds)+(SensA[2,4]*f*Vseeds*Ss))}{ElastOut_{Sa}[i,5]}
\]
## Elasticity with respect to Ss
\[
Elasticity_{Ss} = \frac{(Ss/L) \times ((SensA[2,1]*Vsb*g)+(SensA[2,4]*f*Vseeds*g))}{ElastOut_{Sa}[i,6]}
\]
## Elasticity with respect to Ss1
\[
Elasticity_{Ss1} = \frac{(Ss1/L) \times SensA[2,2]}{ElastOut_{Sa}[i,7]}
\]
## Elasticity with respect to Ss1s2
\[
Elasticity_{Ss1s2} = \frac{(Ss1s2/L) \times SensA[3,2]}{ElastOut_{Sa}[i,8]}
\]
## Elasticity with respect to Ss2
\[
Elasticity_{Ss2} = \frac{(Ss2/L) \times SensA[3,3]}{ElastOut_{Sa}[i,9]}
\]
## Elasticity with respect to Ss2a
\[
Elasticity_{Ss2a} = \frac{(Ss2a/L) \times SensA[4,3]}{ElastOut_{Sa}[i,10]}
\]
## Elasticity with respect to Sa
\[
Elasticity_{Sa} = \frac{(Sa/L) \times SensA[4,4]}{ElastOut_{Sa}[i,11]}
\]
## Storing lambda for each run
\[
Elasticity_{L} = L
\]

### Changing value of lower-level parameter of interest for
### variable rate scenario
\[
Sa = Sa-step_{Sa}
\]

### Changing counter
\[
i = i - 1
\]

```r
colnames(ElastOut_Sa) <- c("Sa", "E_f", "E_Vseeds", "E_Vsb", "E_g", "E_Ss", "E_Ss1", "E_Ss1s2", "E_Ss2", "E_Ss2a", "E_Sa", "L")
write.table(round(ElastOut_Sa,digits=6))

##
Appendix S4. R Code for stochastic simulations

Acacia peuce – Stochastic simulation and analyses
Script author: S. Raghu

ANALYSIS 4
Incorporating environmental stochasticity by generating projection matrix from normal, moderate and good lower level demographic parameters to represent transition matrix in normal, moderate and good years respectively

Executing this script requires R packages 'popbio' and 'demogR' (Jones 2007, Stubben and Milligan 2007) to be installed and loaded for the session.

```r
require(popbio)
require(demogR)
```

Normal, Moderate and Good value for fecundity
```r
fnormal <- 2
fgood <- 200
fmoderate <- 10
```

Normal, Moderate and Good value for Vseeds
```r
Vseedsnormal <- 0.80
Vseedsgood <- 0.90
Vseedsmoderate <- 0.8250
```

Normal, Moderate and Good value for Vsb
```r
Vsbnormal <- 0.20
Vsbgood <- 0.30
Vsbmoderate <- 0.2250
```

Normal, Moderate and Good value for g
```r
gnormal <- 0.95
ggood <- 1.00
gmoderate <- 0.9725
```

Normal, Moderate and Good value for Ss
```r
Ssnormal <- 0.00
Ssgood <- 0.90
Ssmmoderate <- 0.10
```

Normal, Moderate and Good value for Ss1
```r
Ss1normal <- 0.8498
Ss1good <- 0.9097
Ss1moderate <- 0.9097
```

Normal, Moderate and Good value for Ss1s2
```r
Ss1s2normal <- 0.0133
Ss1s2good <- 0.0857
Ss1s2moderate <- 0.0857
```

Normal, Moderate and Good value for Ss2
```r
Ss2normal <- 0.8498
Ss2good <- 0.8649
Ss2moderate <- 0.8649
```
Normal, Moderate and Good value for Ss2a

Ss2anormal <- 0.1140
Ss2agood <- 0.1283
Ss2amode <- 0.1283

Normal, Moderate and Good value for Sa

Sanormal <- 0.95
Sagood <- 1.00
Samoderate <- 0.9950

Initialization of "master matrix" to hold "normal", "moderate" and "good" annual projection matrices in a column, with elements filled by columns

matrices <- matrix(0, 16, 3)

Computation of A matrix elements of "normal", "moderate" and "good" annual matrices and storing them by column in "master matrix"

Proportion of seed rain that enters the seedbank

matrices[13, 1] <- fnormal * Vseedsnormal * (1 - gnormal)
matrices[13, 2] <- fmoderate * Vseedsmoderate * (1 - gmoderate)
matrices[13, 3] <- fgood * Vseedsgood * (1 - ggood)

Proportion of seedbank that germinates and survives to become Sapling 1

matrices[2, 1] <- Vsbnormal * gnormal * Ssnormal
matrices[2, 2] <- Vsbmoderate * gmoderate * Ssmoderate
matrices[2, 3] <- Vsbgood * ggood * Ssgood

Proportion of seedrain that germinates and survives to become Sapling 1

matrices[14, 1] <- fnormal * Vseedsnormal * gnormal * Ssnormal
matrices[14, 2] <- fmoderate * Vseedsmoderate * gmoderate * Ssmoderate
matrices[14, 3] <- fgood * Vseedsgood * ggood * Ssgood

Survival of Sapling 1 remaining in stage

matrices[6, 1] <- Ss1normal
matrices[6, 2] <- Ss1moderate
matrices[6, 3] <- Ss1good

Survival of Sapling 1 transitioning to Sapling 2 stage

matrices[7, 1] <- Ss1s2normal
matrices[7, 2] <- Ss1s2moderate
matrices[7, 3] <- Ss1s2good

Survival of Sapling 2 remaining in stage

matrices[11, 1] <- Ss2normal
matrices[11, 2] <- Ss2moderate
matrices[11, 3] <- Ss2good

Survival of Sapling 2 transitioning to Adult stage

matrices[12, 1] <- Ss2anormal
matrices[12, 2] <- Ss2amode
matrices[12, 3] <- Ss2agood

Survival of Adults remaining in stage

matrices[16, 1] <- Sanormal
matrices[16, 2] <- Samoderate
matrices[16, 3] <- Sagood

Relative probability of normal vs. moderate vs. good years

These can be adjusted based on current climate vs. projected

If climate change is going to increase variability maybe

vital rates will become bimodal, i.e. moderate

weather conditions for A. peuce may no longer occur under

climate change scenarios
Must sum to 1

Relative probabilities under
Current climate
\[p_{1\text{_normal}} < 0.75 \]
\[p_{1\text{_moderate}} < 0.20 \]
\[p_{1\text{_good}} < 0.05 \]

Moderate climate change
\[p_{2\text{_normal}} < 0.85 \]
\[p_{2\text{_moderate}} < 0.10 \]
\[p_{2\text{_good}} < 0.05 \]

Major climate change
\[p_{3\text{_normal}} < 0.90 \]
\[p_{3\text{_moderate}} < 0.05 \]
\[p_{3\text{_good}} < 0.05 \]

Constructing a vector of probabilities
\[p_1 \leftarrow c(p_{1\text{_normal}}, p_{1\text{_moderate}}, p_{1\text{_good}}) \]
\[p_2 \leftarrow c(p_{2\text{_normal}}, p_{2\text{_moderate}}, p_{2\text{_good}}) \]
\[p_3 \leftarrow c(p_{3\text{_normal}}, p_{3\text{_moderate}}, p_{3\text{_good}}) \]

Computation of stochastic growth rate using Tuljapurkar's approximation
and by simulation
\[p_{1\text{_st.gr}} \leftarrow \text{stoch.growth.rate(matrices, prob=2)} \]
\[p_{2\text{_st.gr}} \leftarrow \text{stoch.growth.rate(matrices, prob=2)} \]
\[p_{3\text{_st.gr}} \leftarrow \text{stoch.growth.rate(matrices, prob=2)} \]

Display log stochastic growth rate (both by Tuljapurkar's approximation
and simulation) and confidence intervals for simulated log lambda
Display stochastic lambda from Tuljapurkar's approximation
and from simulation, and CI for simulation
\[\exp(p_{1\text{_st.gr}}) \]
\[\exp(p_{1\text{_st.gr}} _sim) \]
\[\exp(p_{1\text{_st.gr}} _sim_CI) \]
\[\exp(p_{2\text{_st.gr}}) \]
\[\exp(p_{2\text{_st.gr}} _sim) \]
\[\exp(p_{2\text{_st.gr}} _sim_CI) \]
\[\exp(p_{3\text{_st.gr}}) \]
\[\exp(p_{3\text{_st.gr}} _sim) \]
\[\exp(p_{3\text{_st.gr}} _sim_CI) \]

Computing a vector representing independently and randomly
distributed runs of normal, moderate and good years over a 1000 year
period under current climate, moderate climate change and major
climate change
\[\text{current.env} \leftarrow \text{sample(c(rep(1,750), rep(2,200), rep(3,50))}) \]
\[\text{moderate.env} \leftarrow \text{sample(c(rep(1,850), rep(2,100), rep(3,50))}) \]
\[\text{major.env} \leftarrow \text{sample(c(rep(1,900), rep(2,50), rep(3,50))}) \]

Calculation of stochastic sensitivity & elasticity of stochastic growth
rate
\[\text{current.st.sens} \leftarrow \text{stoch.sens(current.env, matrices, k=4) \}
\text{current.st.sens} \]
moderate.st.sens<-stoch.sens(moderate.env,matrices,k=4)
moderate.st.sens

major.st.sens<-stoch.sens(major.env,matrices,k=4)
major.st.sens

Computation of quasi-extinction probability of a stage structured
population in an an independently and identically
distributed stochastic environment

Initial population structure is 1980 density
n<-c(0,1273,91,636)
names(n)<-c("SB", "S1", "S2", "A")

Risk of decline of population (SB not included) below 1980 density
Current Climate (including graphs)
par(mfrow=c(3,1))
x1<-stoch.quasi.ext(matrices, n, Nx=2000, tmax=50, maxruns=10, nreps=10000, prob=p1,sumweight=c(0,1,1,1))
matplot(x1, xlab="Years", ylab="Quasi-extinction probability", type='l', lty=1, col=rainbow(1), las=1, main="Time to reach a quasi-extinction threshold of 2000 above-ground individuals (=1980 population")

Moderate Climate Change
x2<-stoch.quasi.ext(matrices, n, Nx=2000, tmax=50, maxruns=10, nreps=10000, prob=p2,sumweight=c(0,1,1,1))
matplot(x2, xlab="Years", ylab="Quasi-extinction probability", type='l', lty=1, col=rainbow(1), las=1, main="Time to reach a quasi-extinction threshold of 2000 above-ground individuals (=1980 population")

Major Climate Change
x3<-stoch.quasi.ext(matrices, n, Nx=2000, tmax=50, maxruns=10, nreps=10000, prob=p3,sumweight=c(0,1,1,1))
matplot(x3, xlab="Years", ylab="Quasi-extinction probability", type='l', lty=1, col=rainbow(1), las=1, main="Time to reach a quasi-extinction threshold of 2000 above-ground individuals (=1980 population")

Appendix S5. Transition matrices and summary output for deterministic and stochastic perturbation analyses

A. Deterministic Perturbation Analysis

PaDM
A Matrix

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>0.968</td>
<td>0.000</td>
<td>0.161</td>
</tr>
<tr>
<td>S2</td>
<td>0.020</td>
<td>0.939</td>
<td>0.000</td>
</tr>
<tr>
<td>A</td>
<td>0.000</td>
<td>0.029</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Sensitivity

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>0.197</td>
<td>0.000</td>
<td>0.070</td>
</tr>
<tr>
<td>S2</td>
<td>0.804</td>
<td>0.184</td>
<td>0.000</td>
</tr>
<tr>
<td>A</td>
<td>0.000</td>
<td>0.400</td>
<td>0.619</td>
</tr>
</tbody>
</table>

Elasticity

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>0.182</td>
<td>0.000</td>
<td>0.014</td>
</tr>
<tr>
<td>S2</td>
<td>0.014</td>
<td>0.170</td>
<td>0.000</td>
</tr>
<tr>
<td>A</td>
<td>0.000</td>
<td>0.014</td>
<td>0.605</td>
</tr>
</tbody>
</table>

PrDM

A Matrix

<table>
<thead>
<tr>
<th></th>
<th>SB</th>
<th>S1</th>
<th>S2</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.227</td>
</tr>
<tr>
<td>S1</td>
<td>0.022</td>
<td>0.910</td>
<td>0.000</td>
<td>0.802</td>
</tr>
<tr>
<td>S2</td>
<td>0.000</td>
<td>0.086</td>
<td>0.865</td>
<td>0.000</td>
</tr>
<tr>
<td>A</td>
<td>0.000</td>
<td>0.000</td>
<td>0.128</td>
<td>0.995</td>
</tr>
</tbody>
</table>

Sensitivity

<table>
<thead>
<tr>
<th></th>
<th>SB</th>
<th>S1</th>
<th>S2</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.002</td>
</tr>
<tr>
<td>S1</td>
<td>0.016</td>
<td>0.291</td>
<td>0.000</td>
<td>0.082</td>
</tr>
<tr>
<td>S2</td>
<td>0.000</td>
<td>0.774</td>
<td>0.243</td>
<td>0.000</td>
</tr>
<tr>
<td>A</td>
<td>0.000</td>
<td>0.000</td>
<td>0.517</td>
<td>0.465</td>
</tr>
</tbody>
</table>

Elasticity

<table>
<thead>
<tr>
<th></th>
<th>SB</th>
<th>S1</th>
<th>S2</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>S1</td>
<td>0.000</td>
<td>0.233</td>
<td>0.000</td>
<td>0.058</td>
</tr>
<tr>
<td>S2</td>
<td>0.000</td>
<td>0.058</td>
<td>0.185</td>
<td>0.000</td>
</tr>
<tr>
<td>A</td>
<td>0.000</td>
<td>0.000</td>
<td>0.058</td>
<td>0.407</td>
</tr>
</tbody>
</table>
B. Stochastic Perturbation Analysis (PrDM)

A Matrix for ‘normal’ rainfall year

<table>
<thead>
<tr>
<th></th>
<th>SB</th>
<th>S1</th>
<th>S2</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.080</td>
</tr>
<tr>
<td>S1</td>
<td>0.000</td>
<td>0.850</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>S2</td>
<td>0.000</td>
<td>0.013</td>
<td>0.850</td>
<td>0.000</td>
</tr>
<tr>
<td>A</td>
<td>0.000</td>
<td>0.000</td>
<td>0.114</td>
<td>0.950</td>
</tr>
</tbody>
</table>

A Matrix for ‘moderate’ rainfall year

<table>
<thead>
<tr>
<th></th>
<th>SB</th>
<th>S1</th>
<th>S2</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.227</td>
</tr>
<tr>
<td>S1</td>
<td>0.022</td>
<td>0.910</td>
<td>0.000</td>
<td>0.802</td>
</tr>
<tr>
<td>S2</td>
<td>0.000</td>
<td>0.086</td>
<td>0.865</td>
<td>0.000</td>
</tr>
<tr>
<td>A</td>
<td>0.000</td>
<td>0.000</td>
<td>0.128</td>
<td>0.995</td>
</tr>
</tbody>
</table>

A Matrix for ‘good’ rainfall year

<table>
<thead>
<tr>
<th></th>
<th>SB</th>
<th>S1</th>
<th>S2</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>S1</td>
<td>0.270</td>
<td>0.910</td>
<td>0.000</td>
<td>162.000</td>
</tr>
<tr>
<td>S2</td>
<td>0.000</td>
<td>0.086</td>
<td>0.865</td>
<td>0.000</td>
</tr>
<tr>
<td>A</td>
<td>0.000</td>
<td>0.000</td>
<td>0.128</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Current Climate

(Relative probability of normal:moderate:good rainfall years = 0.75:0.20:0.05)

Sensitivity

<table>
<thead>
<tr>
<th></th>
<th>SB</th>
<th>S1</th>
<th>S2</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>0.000</td>
<td>0.002</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>S1</td>
<td>0.004</td>
<td>0.249</td>
<td>0.033</td>
<td>0.043</td>
</tr>
<tr>
<td>S2</td>
<td>0.029</td>
<td>1.744</td>
<td>0.221</td>
<td>0.285</td>
</tr>
<tr>
<td>A</td>
<td>0.050</td>
<td>3.181</td>
<td>0.390</td>
<td>0.481</td>
</tr>
</tbody>
</table>

Elasticity

<table>
<thead>
<tr>
<th></th>
<th>SB</th>
<th>S1</th>
<th>S2</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>S1</td>
<td>0.000</td>
<td>0.214</td>
<td>0.000</td>
<td>0.046</td>
</tr>
<tr>
<td>S2</td>
<td>0.000</td>
<td>0.045</td>
<td>0.188</td>
<td>0.000</td>
</tr>
<tr>
<td>A</td>
<td>0.000</td>
<td>0.045</td>
<td>0.461</td>
<td>0.045</td>
</tr>
</tbody>
</table>

Moderate Climate Change

(Relative probability of normal:moderate:good rainfall years = 0.85:0.10:0.05)

Sensitivity

<table>
<thead>
<tr>
<th></th>
<th>SB</th>
<th>S1</th>
<th>S2</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>0.000</td>
<td>0.002</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>S1</td>
<td>0.004</td>
<td>0.232</td>
<td>0.025</td>
<td>0.042</td>
</tr>
<tr>
<td>S2</td>
<td>0.031</td>
<td>2.033</td>
<td>0.216</td>
<td>0.339</td>
</tr>
<tr>
<td>A</td>
<td>0.048</td>
<td>3.391</td>
<td>0.347</td>
<td>0.521</td>
</tr>
</tbody>
</table>
Elasticity

<table>
<thead>
<tr>
<th></th>
<th>SB</th>
<th>S1</th>
<th>S2</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>S1</td>
<td>0.000</td>
<td>0.198</td>
<td>0.000</td>
<td>0.041</td>
</tr>
<tr>
<td>S2</td>
<td>0.000</td>
<td>0.040</td>
<td>0.184</td>
<td>0.000</td>
</tr>
<tr>
<td>A</td>
<td>0.000</td>
<td>0.000</td>
<td>0.040</td>
<td>0.498</td>
</tr>
</tbody>
</table>

Major Climate Change

(Relative probability of normal:moderate:good rainfall years = 0.90:0.05:0.05)

Sensitivity

<table>
<thead>
<tr>
<th></th>
<th>SB</th>
<th>S1</th>
<th>S2</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>S1</td>
<td>0.004</td>
<td>0.219</td>
<td>0.023</td>
<td>0.041</td>
</tr>
<tr>
<td>S2</td>
<td>0.033</td>
<td>2.110</td>
<td>0.211</td>
<td>0.382</td>
</tr>
<tr>
<td>A</td>
<td>0.047</td>
<td>3.649</td>
<td>0.314</td>
<td>0.551</td>
</tr>
</tbody>
</table>

Elasticity

<table>
<thead>
<tr>
<th></th>
<th>SB</th>
<th>S1</th>
<th>S2</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>S1</td>
<td>0.000</td>
<td>0.187</td>
<td>0.000</td>
<td>0.036</td>
</tr>
<tr>
<td>S2</td>
<td>0.000</td>
<td>0.036</td>
<td>0.179</td>
<td>0.000</td>
</tr>
<tr>
<td>A</td>
<td>0.000</td>
<td>0.000</td>
<td>0.036</td>
<td>0.525</td>
</tr>
</tbody>
</table>
References: