10.1071/BT15045_AC © CSIRO 2015 Supplementary Material: *Australian Journal of Botany*, 2015, 63(1–2), 141–151.

Supplementary Material

Interspecific competition between a non-native metal-hyperaccumulating plant (*Noccaea caerulescens*, Brassicaceae) and a native congener across a soil-metal gradient

Judy P. Che-Castaldo^{A,C,D} and David W. Inouye^{B,C}

^AProgram in Behavior, Ecology, Evolution and Systematics, University of Maryland, College Park, MD 20742, USA.

^BDepartment of Biology, University of Maryland, College Park, MD 20742, USA.

^CRocky Mountain Biological Laboratory, PO Box 519, Crested Butte, CO 81224, USA.

^DCorresponding author. Email: jchecastaldo@sesync.org

Table S1. Differences in AIC values for the different hyperbolic competition models fitted to the dataset

Model name endings indicate which type of error distribution was used (".nb" = negative binomal, ".p" = poisson, and no ending = normal). For both species (native *Noccaea fendleri*, NF, or non-native *N. caerulescens*, NC), the simplified model with negative binomially distributed residuals, and including both site and location effects, had the best fit to the data

NF (native) on NC				NC (non-native) on NF			
Model	Effects	dAIC	df	Model	Effects	dAIC	df
simplified.nb	loc,site	0	30	simplified.nb	loc,site	0	30
full.nb	loc,site	32.3	42	full.nb	loc,site	4	42
simplified.nb	loc	214.2	10	simplified.nb	loc	89.1	10
full.nb	loc	217.5	14	full.nb	loc	96	14
full.nb	none	252.8	7	simplified.nb	none	129.5	5
simplified.nb	none	256.6	5	full.nb	none	130.7	7
full.p	loc,site	3603.9	36	simplified.p	loc,site	6879	24
simplified.p	loc,site	3741.4	24	full.p	loc,site	7048.9	36
simplified	loc,site	193922.6	24	simplified	loc,site	589603.4	24
full	loc,site	198242.2	36	full	loc,site	645496.9	36

Table S2. Results from factor analysis of the plant growth response variables from thegreenhouse experiment

Shown in the table is the eigenvalue of the first factor (the only significant factor with eigenvalue greater than 1), proportion of variance it explained, and its standardized scoring coefficients indicating how the factor related to the original variables

	Factor 1
Eigenvalue	2.326
Proportion variance explained	0.775
Longest leaf length	0.340
Number of leaves	0.408
Number of rosettes	0.384

Table S3. Results from factor analysis of the plant growth and reproductive responsevariables from the field experiment

Shown in the table are the eigenvalues of the two significant factors (with eigenvalue greater than 1), the proportion of variance explained by each factor, and their standardized scoring coefficients indicating how each factor related to the original variables

	Factor 1	Factor 2
Eigenvalue	4.471	1.469
Proportion variance explained	0.639	0.210
Longest leaf length	0.126	0.522
Number of leaves	0.101	0.574
Number of stalks	0.202	-0.119
Number of buds	0.205	-0.126
Height of tallest stalk	0.214	-0.134
Number of flowers	0.198	-0.124
Number of fruits	0.172	-0.122