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ABSTRACT

Context. Seeds harbour a diversity of microbes, which in some plants aid with germination and
establishment. Seeds form a critical part in the lifecycle of plants and a role in many conservation
and restoration activities.Aims. Because this is an emerging field in seed biology, we aim to highlight
the key research gaps of interest to seed on the basis of restoration and ex situ conservation.
Methods. We identify knowledge gaps associated with the seed endophytic microbiome of native
Australian plants through undertaking a literature review. Additionally, culturing methods were used
to identify the fungal seed endophytes of five native Australian species.Key results. We identified a
diversity of taxa within the native seed and show three taxa that are common to all study hosts.
Sampling seed from additional hosts at a site and additional sites of a host species showed new
fungal diversity. Our literature review showed that little information is available on native seed
microbiomes and we identified four key areas where research gaps exist, linking with seed-based
restoration practices.Conclusions. We provide evidence that there is a complex and diverse seed
microbiome within some Australian native plants and suggest ways that it could be integrated into
restoration and conservation practices. Implications. We propose that by taking into consideration
the presence of a seed microbiome and its potential impacts on plant health, seed microbiomes could
be used as one method to restore microbial diversity into an ecosystem and to contribute to the
seedling microbiome and plant health at restored sites.

Keywords: endophyte, horizontal transmission, microbial diversity, mycobiome, restoration, seed
bank, seed fungal endophytes, temporal changes, vertical transmission.

Introduction

There is a growing awareness of the importance of the microbial community in ecosystem 
function, productivity, and health (Finlay et al. 1997; Graham et al. 2016). We know that 
the loss of microbial diversity can alter ecosystem processes such as litter decomposition, 
organic-matter mineralisation, nitrogen uptake and primary production (Delgado-Baquerizo 
et al. 2016), and it can reduce the ability of plants to respond to stresses and changes in the 
environment, reducing the resilience and adaptive potential of the ecosystem (Shade et al. 
2012). Considering microbial diversity in ecosystem restoration is therefore of critical 
importance. However, there is a distinct lack of baseline microbiome information for 
natural ecosystems, with most of our knowledge originating from surveys of agricultural 
plants (Clay 1987; Clay and Holah 1999; Arnold and Herre 2003; Afkhami and Rudgers 
2008; Compant et al. 2011; Barret et al. 2015; Giauque and Hawkes 2016; Klaedtke 
et al. 2016; Adam et al. 2018), forestry species (Helander et al. 1994; Arnold et al. 2007; 
Deckert et al. 2019; Bergmann and Busby 2021) and soil microbiomes (Peay et al. 2007; 
Heneghan et al. 2008; Mu ̃noz-Rojas et al. 2016; Gellie et al. 2017; Schöler et al. 2017; 
Leff et al. 2018; Saleem et al. 2019; Ngugi et al. 2020). 

Integration of microbial communities in restoration within Australia is still in the early 
stages of application, with current approaches predominantly using soil microbes 
(Moreira-Grez et al. 2019; Alfonzetti et al. 2022; D’Agui et al. 2022; Dadzie et al. 2022) despite  
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microbes being present also within all tissues of a plant. 
All the microbes associated with a plant form the plant 
holobiont, which is composed of epiphytic (exterior microbes), 
and endophytic (those within the living tissue of a plant) 
microbes (Fig. 1; Vandenkoornhuyse et al. 2015), and of the 
plant holobiont, endophytes are thought to comprise the 
majority of the community (Hardoim et al. 2015). 

Endophytes can occur within all tissues of a host plant, with 
the diversity, composition, and function of microbiomes 
of seed the least known of all the assemblages occupying 
different plant organs (Shade et al. 2017). Yet, seeds contain 
the embryo that gives rise to the dominant sporophyte 
generation and specialised tissue to protect and sustain the 
early development of the new generation. Seeds are either 
contained within fruit that facilitates dispersal or have 
special structures such as wings to aid dispersal, thus being 
the primary mechanism for the plant to migrate and colonise 
new areas. Furthermore, seed can remain dormant in the 
community in a soil seed bank or within a canopy in the 
case of serotinous seed, waiting for suitable conditions to 
release and germinate. 

Research has shown that a taxonomically diverse range of 
bacteria and fungi occur within all the tissue types within seed 
(Truyens et al. 2015; Verma and White 2019; Zheng and Gong 
2019). Biodiversity and Ecosystem Functioning hypotheses 
(Loreau et al. 2001) suggest that by soil and plants having a 
diversity of microbes, they harbour a wider range of potential 

functions, and this higher functional diversity allows for them 
to respond to a wider range of potential abiotic and biotic 
stressors (Loreau et al. 2001; Prosser et al. 2007; Saleem 
et al. 2019; Taylor et al. 2020; Morales Moreira et al. 
2023). Supporting this hypothesis, research has found that 
a diverse seed microbiome provides disease resistance 
against soil pathogens and other pathogenic organisms in 
Oryza sativa (Verma et al. 2018; Matsumoto et al. 2021), 
Solanum lycopersicum (Morella et al. 2019), Brassica napus 
(Rybakova et al. 2017) and the invasive species Phragmites 
australis (White et al. 2018). Field experiments showed that 
Triticum aestivum seeds under drought conditions had a 
more diverse and higher number of culturable endophytes 
than did seeds from plants under rainfed conditions (Hone 
et al. 2021). Likewise, a high fungal diversity was significantly 
correlated with high seed viability and germination in Musa 
spp. seeds (Hill et al. 2021). Furthermore, greenhouse 
inoculation studies have shown that the addition of a more 
species rich microbial consortia improves plant growth more 
than less diverse or even single-species inoculants in Triticum 
aestivum (Sahib et al. 2020) and Solanum lycopersicum (Singh 
et al. 2015). 

As seed also provides a vector for seed-borne pathogens 
(Sheppard 1998; Goko et al. 2021; Martín et al. 2022), 
phytosanitary procedures are aimed towards the use of physical 
and chemical treatments of seeds to remove seed microbes 
(Mancini and Romanazzi 2014), resulting in changes in the 

Fig. 1. (a) Different spheres of a plant where microbes such as fungi and bacteria can exist as
endophytes forming part of the plant holobiont, (b) different components of a seed within
which seed endophytes can occur, (c) seed endophytes can also occur between the cells of the
seed tissue.
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composition of the seed microbiome (Solanki et al. 2019). 
Recent studies have raised concern regarding this practice 
because of the loss of beneficial seed endophytes (Ayesha et al. 
2021), resulting in reduced seedling vigour (Vasanthakumari 
et al. 2019), reduced emergence (You et al. 2020) and reduced 
germination and survival (Leroy et al. 2019). Some seed 
endophytes can show benefits to their host plant, especially 
during early lifecycle stages (Shahzad et al. 2018). Many 
plant species used in restoration have low rates of germina-
tion and establishment (Merritt et al. 2007; Turner et al. 
2013; Erickson 2015; Erickson et al. 2016); the diversity of 
microbes isolated from seed begs the question whether this 
challenge may be overcome by considering seed endophytes 
and their roles during these early stages of restoration, similar 
to how seed microbes are utilised in agriculture for improving 
seedling growth (Cardarelli et al. 2022; Paravar et al. 2023), 
as a herbivory deterrent (Czarnoleski et al. 2010; Laihonen 
et al. 2022) and to provide resilience against drought 
(Hubbard et al. 2012; Abideen et al. 2022; Siddique et al. 
2022) and salt stress (Walitang et al. 2018; Desai et al. 2023). 

The seed microbiome may comprise a flexible and a core 
microbiome, with the latter being defined as taxa that are 
consistently abundant and prevalent across individuals and 
populations, providing key components of the composition 
of the microbial community (Shade and Handelsman 2012). 
Flexible taxa, the microbial taxa adapted to specific local  
constraints, contribute to the seed microbiome and are reflective 
of the surrounding site, from where they can be acquired 
horizontally from the surrounding soil and as aerosols from 
the surrounding air (Abdelfattah et al. 2023). 

Identification of ‘core’ seed microbiota can help identify 
microbial taxa and functions that may be particularly impor-
tant for host fitness (Simonin et al. 2022). Identification of 
core seed microbes may assist restoration and conservation 
work in highlighting what species are particularly important 
to retain in seed-bank collections of these hosts, or they may 
provide good candidates when inoculation or transplantations 
is required to restore microbes to a degraded site. By 
identifying the core microbiome and identifying which of 
the core is possibly lost during seed processing and storage, 
we may be able to augment the seed with those lost. We 
understand that seed storage is crucial to maintain seed 
viability, but we do not have any knowledge whether some 
of the microbes lost during the storage period may actually 
be able to help germination and early establishment. 

Seed plays an important role in conservation and restora-
tion of degraded lands, with seed forming the basis of many 
large-scale restoration and conservation projects. Seed used 
in restoration can either be harvested from natural sites, 
regenerated sites or from seed-production areas (SPAs), 
where seed is grown in bulk for large-scale restoration 
projects (Nevill et al. 2016). Following harvesting, the seed 
can undergo processing and storage, depending on various 
factors, seed longevity and demand (Frischie et al. 2020). 
Long-term storage of seeds in seed vaults or seed banks is 

the basis of ex situ collections for many orthodox native 
Australian species (Richardson et al. 1997). Conservation of 
microbial diversity through seed banks as ‘incidental’ 
fungal banks has been proposed (Berg and Raaijmakers 2018; 
Hill et al. 2021). However, utilising seed banks as incidental 
fungal banks requires seed-sampling strategies that also 
represent seed microbial diversity. With this in mind, 
we wonder what ‘luggage’ the seed carries with it. Can it help 
to establish the next generation of plants? Given the impor-
tance of seed in conservation and restoration efforts, should 
we consider the seed microbiome in the steps preceding the 
utilisation and storage of these propagules?’ 

In this paper, we searched the literature for what is known 
about seed microbiomes of native species, particularly for 
Australian species, that could facilitate restoration and 
conservation. We sought to help direct new research to enable 
Australia to develop a restoration programme that maximises 
the conservation of plant species, incorporating appropriate 
seed microbiomes to facilitate that conservation. We also 
present some preliminary results from our on-going research 
into Australian native species to determine whether a core 
seed microbiome might be present for all study species, or 
for particular taxa, because this could focus microbiome 
conservation. We investigated variability in microbiomes 
among closely related and distantly related taxa and also 
investigated whether sampling at different sites resulted in 
similar seed microbiomes for a particular taxon. Finally, using 
the literature and our preliminary results, we identified key 
knowledge gaps that we believe are applicable to restoration 
and conservation. 

Materials and methods

We undertook a literature search using the database Scopus 
(Elsevier, Atlanta, USA) and the search term ‘seed endophytes’ 
OR ‘seed microbiome’ by using the abstract, title and keyword 
limiter, as at September 2022. We summarised the published 
information by the host plant species and the origin of the 
seeds used (wild, cultivated, germplasm collection). We focused 
on wild seed, particularly seed of Australian native species. We 
were particularly interested in information that would 
contribute to restoration activities. 

We also isolated and identified seed endophytic fungi from 
the following five Australian native plants: Banksia ericifolia 
(Proteaceae), B. serrata (Proteaceae), Petrophile pulchella 
(Proteaceae), Microlaena stipoides (Poaceae) and Themeda 
triandra (Poaceae), following the methods of Mertin et al. 
(2022). Seed were collected from B. ericifolia, B. serrata and 
P. pulchella during June–August 2021 and for T. triandra and 
M. stipoides in December to late January 2022. The two grass 
species are commonly used in restoration and while seed are 
readily available from commercial suppliers, the work here 
was conducted on wild-collected seed. Wild seed was 
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collected from serotinous cones from the three Proteaceae 
species. Apart from P. pulchella, where only one site was 
sampled, mature seed were collected from multiple sites 
and, at each site, 10–12 maternal plants were sampled. To 
isolate fungal endophytes, seeds were serially immersed in 
4% bleach for 10 min, distilled water for 2 min, 70% 
ethanol for 5 min, then a final rinse of distilled water for 
2 min, thrice. Each surface-sterilised seed was plated onto 
1/4-strength potato dextrose agar (PDA) medium in 60 mm 
Petri dishes and dark incubated for 28 days at 25°C. 
Efficacy of the surface sterilisation method was tested by 
the plate imprint method of Reissinger et al. (2001) by 
using an arbitrary subset of 15 seeds from each host at each 
site. This involved pressing the surface of each tested 
sterilised seed onto 1/4-strength PDA containing 2% lactic 
acid and incubating it in the dark for 7 days. Only seeds 
where no growth was observed on the agar plate were surface 
sterilised effectively. Unique morphotypes were pure-
cultured via hyphal tipping and DNA was extracted from the 
mycelium of every fungal isolate using the DNA Fast Prep kit 
(Q-biogene Inc., CA, USA) as per the manufacturer’s 
instructions. Approximately 700 base pairs of the internal 
transcribed spacer (ITS) region of rRNA were amplified using 
the primers ITS1F/ITS4 (Gardes and Bruns 1993) and Sanger-
sequenced following the methods of Mertin et al. (2022). 

The resultant dataset contains the ITS sequences for 2069 
pure-cultured isolates. These isolates were clustered into 
operational taxonomic units (OTUs) by using the software 
CD-HIT est. (Li and Godzik 2006) on the basis of 97% 
sequence similarity. Taxonomy was assigned to each OTU 
on the basis of percentage identity scores by using the NCBI 
BLASTn plugin in Geneious v.11.1.5 against the UNITE 
database (Abarenkov et al. 2010). We used this dataset to 
ascertain the taxonomic breadth of seed endophytes in native 
seed from the five plant species and identified core and shared 
taxa among the hosts by undertaking a heatmap analysis by 
using Bray Curtis dissimilarity measures, implemented in 
the software R v.4.1.2, (R Core Team 2021) using the 
package Phyloseq v.1.38.0 (McMurdie and Holmes 2013). 

As seed banks have been proposed as ‘incidental fungal 
banks’ (Berg and Raaijmakers 2018; Hill et al. 2021), we 
used our data to investigate what strategies may affect the 
fungal diversity incidentally collected through seed banking. 
We asked whether sampling of additional sites of a host 
species and sampling additional hosts at a site captures 
additional seed microbial species. We analysed a subset of our 
dataset, comprising fungal species from the seed of Banksia 
serrata, B. ericifolia and Petrophile pulchella collected from 
multiple individuals from four, six and one site respectively. 
All three hosts co-occurred at the Royal National Park site 
(RNP), with the two banksias co-occurring at most sites. 
The grasses were not included in this analysis, because they 
did not co-occur with the other host species. 

Results

The literature provided only a small window into the diversity 
of seed endophytes of native Australian species (Supplementary 
material Table S1). Knowledge from natural ecosystem hosts is 
less common than for agricultural species, with few studies 
looking at Australian native host species in particular. Of the 141 
publications identified through our Scopus search, 81 were 
about agricultural species, with Zea mays, Triticum aestivum, 
Oryza sativa and Hordeum vulgare comprising 32 of the 81 
publications (Table S1). Of the 31 papers on wild species, 
six were focussed on wild-crop relatives, three were metal-
or salt-accumulating plants, and seven were from invasive 
species. Two papers identified seed endophytes from a range 
of species stored in seed banks. Of the peer reviewed papers 
surveying wild species, four investigated endophytes from 
Australian native plant species, namely, Glycine clandestine, 
a wild soybean relative, (Chandel et al. 2022) and the aquatic 
seagrass Halophila ovalis (Tarquinio et al. 2021), our own 
work on the Australian endemic genus Banksia (Mertin 
et al. 2022) and the work of Aldous et al. (1999) on a range 
of native Australian grasses. Our work on B. serrata and 
B. ericifolia, where seeds and maternal lines were kept 
separate, found that culturable fungi were present across all 
sites, individuals and species (van der Merwe 2021; Mertin 
et al. 2022). 

We identified the following knowledge gaps in our 
literature search that have implications to seed conservation 
and restoration: 

1. An absence of papers from wild species addressing the 
transmission pathways of fungi to seed. 

2. Despite the beneficial effect of seed microbes being shown 
for many crop plants, we found only a few papers testing 
plant-growth benefits for wild species, with none of these 
on native Australian plants. 

3. Few studies have looked at the interactions between the 
seed and soil microbes during the period of dormancy, 
where the seed is within the soil seed bank and the 
effect of seed provenance on these interactions. 

4. Most studies gathered information only at one time point, 
limiting our knowledge of seed fungal dynamics and 
temporal patterns. This is particularly important, because 
seeds can lay dormant as soil seed banks or within seed 
vaults for long periods of time. 

For the five Australian native species we studied, we found 
a diverse range of seed fungi, belonging to multiple phyla 
(Table S2) The majority of the 161 fungal species we 
identified from the five hosts belonged to Ascomycota, with 
Sordariomycetes, Dothideomycetes and Eurotiomycetes the 
dominant fungal classes. The Basidiomycota, Mucoromycota 
and Mortierellamycota were present but less diverse. In 
particular, Basidiomycota was represented only by two 
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classes, Ustilaginomycetes and Agaricomycetes. Species of 
Pencillium, Banksiamyces and Alternaria were the most 
abundant fungal genera present (Table S2). Nineteen species 
of Penicillium were found among the five hosts, with 
P. glabrum, P. citreonigrum and P. citrinum being the most 
abundant. 

More species of fungal seed endophytes were collected as 
we sampled more hosts at a site. At the Royal National Park 
site (RNP), we identified 19 fungal species from 10 individ-
uals of P. pulchella (Fig. 2). With the addition of seeds from 
B. serrata (from the same family but different genus), we 
identified an additional 13 fungal species. With the addition 
of a third host B. ericifolia (same family), we again identified 
11 fungal species not identified in the previous two hosts. 
However, when considering the abundance of specific fungal 
taxa, we found that the highly abundant fungal species of the 
two banksias are very similar but different from that of 

Petrophile pulchella. (Fig. 2), suggesting that perhaps host 
relatedness plays a role in structuring site communities and 
that abundant fungal taxa may be captured through sampling 
seed from close relatives. These results indicated that by 
sampling seed of multiple hosts at the same site, we are 
more likely to capture the fungal seed microbiome of a site. 

We also investigated whether we capture more seed fungal 
species by sampling multiple sites of a host. We found that for 
B. serrata, new fungal species were discovered by sampling 
additional sites (Fig. 2). However, additional taxa from new 
sites were largely rare taxa, with the more abundant fungal 
species present at all sites. For B. ericifolia, our analyses 
indicated that even after four sites, new fungal species were 
uncovered, although, as within B. serrata, most of the highly 
abundant taxa are captured with sampling of only two sites. 
Thus, if we want to capture the complete fungal seed micro-
biome of a species, we need to sample seed from multiple sites. 

Fig. 2. Bar plots indicating the relative abundance of fungal species among sites (RNP, MTB, PTG, BLK, BBY and LNC) of each host
(Petrophile pulchella, Banksia serrata and B. ericifolia) and among hosts at a site (RNP). Each rectangle within a column shows the relative
abundance of that fungal species as a percentage of total fungal species for that sampling group (column). Orange rectangles indicate
new seed fungal species identified when (a) additional host species were sampled at Royal National Park (RNP). Green represents
when (b) additional sites of B. serrata were sampled and blue represents when (c) additional sites of B. ericifolia were sampled. Arrow
shows the order of site and host sampling.
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Among the 161 fungal species identified across the five 
host species, three fungal species were shared, namely, 
Pestalotiopsis knightiae, Talaromyces chloroloma and 
Penicillium glabrum. As  T. chloroloma was found in very 
low abundance (<0.25% of all sequences for each host) in 
the two banksias, we suggest that this is not a core species; 
however, the more abundant P. knightiae and P. glabrum are 
suggested to comprise core species for all five study plant 
hosts (Fig. 3). Furthermore, both grasses shared 14 taxa, with 
Alternaria alternata, Epicoccum sorghinum, Sarocladium 
strictum and Diaporthe eucalyptorum comprising the core 
microbiome because these taxa were consistently found in 
high abundance in these hosts. 

We did not identify a core microbiome shared among the 
three woody hosts of B. serrata, B. ericifolia and P. pulchella. 
Although Petrophile pulchella had nine taxa in common with 
B. ericifolia, they were in low abundance in B. ericifolia and, as 
such, are not core species of both these hosts. Seven fungal 
species were shared between the two banksias, which were 
also absent from the grasses. In particular, P. citreonigrum and 
Neofusicoccum macroclavatum were found in both banksias in 
high abundance and prevalence, and, as such, would be 
considered core taxa (Fig. 3). 

Discussion: implications for restoration and
conservation

Preliminary findings for some native Australian
plants

In our work, we identified a taxonomically diverse range (161 
species) of fungal taxa cultured from the seed of five native 
Australian plants collected from natural bushland areas. 
The fungi represented a range of different genera, although 
were dominated by species of Penicillium, Banksiamyces and 
Alternaria. Penicillium species have been associated with 
producing mycotoxins such as citromycetin (Grove and Brian 
1951), citroviridin (Nishie et al. 1988) and citrinin (Flajs 
and Peraica 2009) and, hence, have been thought to play a key 
role in defence against pathogens. They also have been associ-
ated with causing seed disease and decay (Duduk et al. 2017). 

Likewise, species of Banksiamyces and Alternaria have 
been associated with causing decay in lignified tissue of the 
host plant (Beaton and Weste 1984; Sharma et al. 2016), and 
some species of Alternaria have been associated with causing 
disease on cotton (Le and Gregson 2019), pistachio (Ash and 
Lanoiselet 2001) and canola (Al-Lami et al. 2019). In other 
instances, Alternaria has been associated with promoting 
plant growth through increasing root growth (Zhou et al. 
2018) and increasing seed size (Lindblom et al. 2018). 
Banksiamyces has only recently been isolated from seed 
(Mertin et al. 2022), being previously known only as a 
saprophyte on senescent Banksia infructescences (Beaton and 
Weste 1982). Having this diversity of fungi and a diverse 

range of roles (pathogens, saprotrophs and beneficial) within 
the population may provide a complementarity of traits, 
which on the basis of biodiversity and ecosystem functioning 
hypotheses, may assist with responding to a range of potential 
abiotic and biotic stressors (Loreau et al. 2001; Prosser et al. 
2007; Saleem et al. 2019; Taylor et al. 2020; Morales Moreira 
et al. 2023). 

The fungal species that we have isolated from native 
Australian plant seeds shared some taxa with those that are 
frequently isolated from crop species. A recent meta-analysis 
of seed microbes from 50 different plant species (Simonin 
et al. 2022) identified that species of Alternaria were 
dominant in multiple crop families, with Alternaria also being 
common within our dataset. Banksiamyces was dominant in 
the banksias, but was not identified within the meta analysis 
and may represent a genera of fungi that is a host specialist on 
banksias, as suggested by Sommerville and May (2006). 

Conserving seed microbiome diversity, whether in seed 
banks or retaining it through seed production area procedures 
also requires some understanding of how the communities are 
structured. As many of our analyses were focussed on com-
paring the seed fungi present between the different host 
species and among different populations of a host species, 
further work is required to understand how seed fungal 
communities are structured at the single-seed level. Studies 
of seed from both crop and natural ecosystem hosts have 
identified that only a few culturable fungal species are present 
within each seed. Mertin et al. (2022), in  Banksia seed, found 
that 97% of seeds contained only one culturable fungus, 
whereas studies of individual bean seeds using culture-
independent approaches identified that multiple fungal 
species belonging to at least three different fungal families 
were present in individual seeds (Bintarti et al. 2022). The 
differences in results by using these techniques suggests that 
perhaps a proportion of seed endophytes are not culturable or 
are slow-growing, meaning that faster-growing species may 
outcompete them in culture. It may also suggest that different 
plants house different communities and different sizes of 
community. 

The first step in integrating native Australian seed micro-
biome knowledge into restoration efforts requires an under-
standing of the prevalence and diversity of seed endophytes 
within native Australian species that are frequently used in 
restoration. Having ‘baseline data’ of how prevalent seed 
fungi are, what fungal taxa are present and similarities and 
differences among multiple populations of a host in these 
communities, will allow for us to be more informed about 
the inherent variability of these communities, resulting 
in better decisions in developing appropriate restoration 
programs. 

Currently, seed collection guidelines for seed-bank storage 
and restoration purposes advocate collecting a genetically 
diverse seed collection of a plant species to help improve 
the success of restoration and improve the future adap-
tive potential of plantings (Broadhurst et al. 2008; 
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Fig. 3. Heatmap showing the relative abundance (as a percentage of total isolates for each host species) of each
of the fungal species identified (rows) among each of the five host species of Banksia serrata, B. ericifolia, Themeda
triandra,Microlaena stipoides and Petrophile pulchella (columns). Fungal species found across all hosts have red taxon
labels, those shared between the two grasses are green, and those shared between the two banksias are orange.
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Bragg et al. 2022). The number of populations and individuals 
that are sampled are based on the dispersal distances of that 
species, or the genetic distances between populations 
(Harrison et al. 2021). Results from this study suggest that 
we need multiple sites of a host to document the complete 
diversity of seed microbial communities, although sampling 
of only a few sites captures the highly abundant endophytes. 

There were the following three fungal species that were 
shared among the five host species: Pestalotiopsis knighteae, 
Talaromyces choloroloma and Penicillium glabrum. Pestalotiopsis 
knighteae was first described from isolates from Knightia. 
Pestalotiopsis is a species-rich genus that is widely distributed 
throughout tropical and temperate regions (Maharachchikumbura 
et al. 2014) and is commonly isolated as a pathogen and an 
endophyte. Talaromyces chloroloma was first isolated from 
soils of the South African fynbos (Visagie and Jacobs 2012), 
and Penicillium glabrum is known also as a ubiquitous 
fungus, commonly associated with soil, decaying organic 
matter and as storage rots of seeds or pathogens of fruit and 
vegetables (Barreto et al. 2011). In our previous work solely 
looking at B. serrata and B. ericifolia, we identified core fungal 
species that were present and abundant within the four 
populations of each host sampled (Fig. 4), although the two 
hosts shared few fungal species overall, despite them co-
occurring at a site. Each host had unique core microbes, and 
a diversity of other microbes that were sometimes unique to 
that site. 

Because it may not be possible to conserve all of the seed 
diversity via seed banking, with studies demonstrating that 
seed storage methods result in the loss of microbes (Chandel 
et al. 2021; Dutta et al. 2022; Martín et al. 2022), identifying 
these core microbes may direct restoration efforts into what 
fungal species to focus on conserving. These microbes may 
be of particular value when using the direct seeding approach 
in degraded soils where the microbiome is poor, because 
the seed would provide the only source of microbes for the 
seedling until the aboveground parts of the plant have 
grown. There are likely to be trade-offs in just focussing on 
retaining the core fungal species in seed collections, because 
rare and transient taxa may provide functions that supplement 
or fulfil particular niches in the community (Chen et al. 2020). 
(Fig. 5a and b) 

Gaps in our understanding of seed microbiomes

How are seed fungi acquired in wild plants?
Our data indicated that seed from healthy ecosystems may 

carry with them a diverse fungal community, but our data 
do not provide any information on how this community 
established within the seed. Our literature review also 
identified a lack of studies on how fungi are transmitted to 
wild seed. Understanding how plants acquire microorgan-
isms, in particular how the microbes get into the seed and 
where they localise, can help design better ways to inoculate 

Fig. 4. (a) Column graph showing the percentage of total fungal isolates that were assigned to each fungal species
from the seed of Banksia ericifolia and B. serrata from the following four sites in the greater Sydney region: Blackheath
(BLK), Mount Banks (MTB), Patonga (PTG) andWattamolla (RNP). Each fungal species is represented by a different
colour. (b) An isolate of the core community of B. ericifolia, assigned as Penicillium glabrum, and (c) an isolate of the core
community of B. serrata, assigned as Banksiamyces sp. 1. Photographs by A. Mertin.
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Fig. 5. Summary diagram of (a, c, e, g) the four key identified knowledge gaps regarding seed microbiomes of
wild plants and (b, d, f, h) their applications to restoration and conservation practices.

seeds with microbes that may provide an alternative approach factors is in the maintenance of a diverse microbiome for 
to adding soil microbes to degraded sites in restoration. restoration projects (Fig. 5c, d). 
Understanding whether endogenous or exogenous microbes The following three main pathways have been reported 
are the main contributors to the seed microbiome may also for how seed microbes can be acquired in crop plants: 
inform how important retaining each of these contributing (i) vertically via transfer of the microbiota from vegetative 
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tissues to the ovule and then to the developing embryo (e.g. 
Epichloë in grasses; Liu et al. 2017), (ii) vertically through 
floral pathways via the stigma of maternal plants (Hodgson 
et al. 2014; Nelson 2018), which is utilised as a way to 
introduce beneficial microbes to progeny seed (Mitter et al. 
2017), and (iii) horizontally whereby seeds are colonised 
from the external environment via fungal spores and 
propagules (e.g. Brassica napus seed; Morales Moreira et al. 
2021). This can include via wind as aerosols or, more 
commonly, direct colonisation from soil microbes when the 
seed is dormant in the soil seed bank (Gallery et al. 2007; 
Klaedtke et al. 2016; Dai et al. 2020). The relative proportion 
of species transmitted vertically to horizontally is largely 
unknown, although studies have indicated that most of the 
microbiome of crops is assembled horizontally from the 
surrounding environment and only a subset is vertically 
transmitted (U’ren et al. 2009; Sarmiento et al. 2017; 
Abdelfattah et al. 2023). In our comparisons of the fungi 
cultured from the five host species, we found that very few 
taxa were shared. In particular, among the three hosts that 
co-occurred (B. serrata, B. ericifolia and P. puchella), we 
found no ‘core’ taxa, although two core taxa were shared 
between the banksias. Having few taxa shared among hosts 
at a site suggests that perhaps a large proportion of the seed 
fungi are maternally inherited or that particular aspects of a 
host’s life history or physiology may dictate what fungi colonise 
the seed. The similarity in taxa between the two banksias 
suggests that host life history and perhaps relatedness may 
play a role in this and provides an avenue for future research. 

Strict maternal vertical transmission during floral and 
early seed development is seen as rare as fresh seeds typically 
contain few fungal species (Ridout et al. 2019). Despite this, 
vertical transmission, where a subset of the initial seed 
microbiome is still present after multiple generations of 
seed, has been identified in multiple monocot and dicot 
crops, such as radish and bean (Chesneau et al. 2022), 
wheat (Vujanovic et al. 2019), rice (Kim et al. 2022) and 
the model plants Arabidopsis thaliana and Brachypodium 
distachyon (Johnston-Monje et al. 2021). Endophytes that 
are vertically transmitted from parent to offspring during 
seed development may have greater influence on offspring 
because these associations have the potential to persist 
throughout the seedling and the adult lifestyle stages (Liu 
et al. 2013). Therefore, identifying vertically transmitted 
members of the seed microbiome, and ensuring that they are 
retained through seed processing and storage methods used in 
restoration activities may help improve plant growth and 
have these beneficial microbes be passed on to future genera-
tions of plants and their progeny. 

Challenges in defining and testing the role of
seed fungi on wild-plant health

Our literature review showed that within crop species, seed 
microbes play an important role in the spermosphere (the 
soil and microbes around a dormant or germinating seed; 

Nelson 2004), breaking seed dormancy (Delgado-Sánchez 
et al. 2011), reducing seed predation (Zhang et al. 2012), 
promoting germination (Philipson and Christey 1986; Clay 
1987; Delgado-Sánchez et al. 2013) and promoting seedling 
establishment (Wäli et al. 2009). Where some species are 
seen as beneficial to their host, other endophytes have also 
been implicated as latent pathogens and latent saprotrophs 
causing disease and decay during times of host stress or 
senescence (Carroll 1988). As such, seed endophytes play a 
broader role in the health of the ecosystem. Saprotrophs 
play a role in degrading organic matter, which then can be 
recycled within the ecosystem. 

The role of seed microbes in seedling survival and 
performance in wild plants has also been demonstrated, with 
seeds containing microbes that contribute to drought tolerance 
(Jeong et al. 2021; Lactuca serriola), seedling germination and 
development (Sánchez-López et al. 2018; Shearin et al. 2018; 
Crotalaria pumila and Phragmites australis), increasing shoot 
growth (Choi et al. 2022; Capsella bursa-pastoris), and 
improved cadmium tolerance, increased seed yield, total 
chlorophyll content, antioxidant production and lipid peroxi-
dation (Parmar et al. 2022; Dysphania ambrosoidoides). 
Many of these studies have data only for the juvenile stages 
of the plant and, as such, the long-term effects on plant 
growth into the adult stages are still unknown. Results from 
our study indicated that the fungi found in high abundance 
within our dataset (Penicillium glabrum, Alternaria alternata 
and Banksiamyces) have been reported in the literature as 
showing a wide range of roles within their host. For example, 
Penicillium glabrum has been associated with increased plant 
growth in low-nutrient environments (Khan et al. 2008), but 
also with seed decay and disease (Barret et al. 2016) and, 
so, the potential role of these seed endophytes may vary 
depending on the host plant and the environmental context. 
Future research into experimentally testing the strain 
variation in plant growth promoting potential and disease 
potential of fungi from native seed is needed. 

There are experimental challenges in understanding the 
role of seed microbes. When a comparative design is being 
undertaken, comparing the growth of seedlings with or 
without seed microbes, getting axenic seed to use as a 
negative control treatment without affecting germination or 
growth is challenging. It is often achieved through the use 
of immersion in bleach (Verma and White 2019) or through 
the use of fungicides and antibiotics (Leroy et al. 2019; 
Vasanthakumari et al. 2019), but in these instances it is 
acknowledged that there is no guarantee of microbe-free 
seed. Even seed produced in hermetic microcosms still had 
vertically transmitted microbes present (Johnston-Monje et al. 
2021). Inoculation experiments are particularly challenging 
as variables such as the inoculant species and diversity, cell 
concentration, inoculation method and maintaining inoculum 
viability when coating or pelleting a seed can all affect the 
experimental outcome (Paravar et al. 2023). Undertaking 
experiments in field trials introduces an additional range of 
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abiotic (Lopes et al. 2021) and biotic factors, such as the 
resident soil microbes that need to be considered 
(O’Callaghan et al. 2022) (Fig. 5e and f ). 

Understanding interactions between soil and
seed microbes to contribute to direct seeding and
seed-enhancement technologies

Microbial interactions between soil and seed microbes that 
occur on and around a germinating seed play an impor-
tant role in how a plant acquires its initial microbiome 
(Schiltz et al. 2015). In restored sites (especially those 
where emphasis on reinstating organic matter and soil 
microbes are not emphasised), there is not always a soil 
microbiome to ‘grab’ from, and hence the seed microbiome 
forms the only source of microbes for the seedling until the 
aboveground parts of the plant are present (Araújo et al. 
2014; Banerjee et al. 2019). Similarly, the surrounding 
vegetation can be so depauperate that horizontal transmis-
sion is absent (Henning et al. 2021). As with seeds, soils 
also contain both beneficial and detrimental fungi (Morgan 
et al. 2005). Some fungi within seed can directly protect 
the seed from soil pathogens by producing secondary metabo-
lites and chemicals, or protect indirectly by competing 
for space and nutrients within the seed (Matsumoto et al. 
2021), whereas others are associated with causing disease 
(Baker and Smith 1966). Hence, having a diverse range of 
microbes present in the mature seed used for plantings may 
be advantageous. 

It is not known what effect using local versus non-local 
seeds may have on the plant microbiome. Introducing ‘non-
local’ seed microbes to a resident soil microbial community 
may have an effect on the seed–soil microbe interactions, with 
the potential for flow-on effects to the seedling microbiome. 
This concept is supported by studies that have shown that 
inoculating soil with local soil microbes can be more 
beneficial to seedling growth than is inoculating with a 
non-local beneficial mycorrhizal inoculant (Paluch et al. 2013; 
Dadzie et al. 2022). Soil microbes can have a strong influence 
on seed microbes, and it has been suggested that using local soil 
from the location of the source plant can enhance the conser-
vation of the seed microbiota (Chandel et al. 2022). This 
suggests that microbial provenance plays a role in seed–soil 
microbial interactions and plant-host benefits. 

Understanding the implications of seed microbe prove-
nance and seed and soil microbial interactions may contribute 
to the field of seed enhancement technologies. Microbes 
isolated from seed may perform better than soil microbes 
because they can withstand the physio-chemical changes that 
happen in the seed during germination, with some having the 
ability to translocate to other parts of the plant (Abdelfattah 
et al. 2023) or be vertically transmitted (Barret et al. 2015). 
Bio-priming or coating seeds with seed-borne microbes could 
be incorporated into the suite of seed-enhancement technolo-
gies (Pedrini et al. 2020) already being tested in large-
scale direct seeding applications. Understanding whether 

seed-borne microbes are ‘compatible’ with local soil microbes 
would also contribute to increased success using this approach, 
because soil inoculations can often fail due to the resident soil 
microbes effect (O’Callaghan et al. 2022; Fig. 5g, h). 

Understanding temporal changes in seed
microbiomes would inform seed-based ex situ
conservation

Long-term seed storage may occur as natural canopy-held 
seed banks or soil seed banks. In these natural settings, over 
90% of available seeds are faced with predation from 
vertebrates and insects (Kolb et al. 2007; Dalling et al. 
2011), while also dealing with soil-borne pathogenic fungi 
(Kluger et al. 2008). It is from these natural settings that 
much of our understanding of how endophyte communities 
change over time comes. It has been suggested that an increase 
in endophyte diversity with age may be due to a large part of 
the endophyte community being horizontally transmitted, and 
this diversity accumulating over time (Arnold and Lutzoni 
2007). This is demonstrated by endophytic communities 
differing in both abundance and diversity between canopy-
held young and old Banksia ericifolia seeds (van der Merwe 
2021). 

Our literature review revealed that little is known about 
the extent of seed microbial change over extensive periods 
of time within the soil seed bank. Temporal changes in 
microbiomes that occur while seed is stored in the natural 
soil seed bank have restoration implications. This is a consid-
eration during mining operations where topsoil containing 
the soil seed bank is stored unplanted for extended periods 
of time (Moreira-Grez et al. 2019), resulting in the decline 
of carbon content and a shift in the composition of the soil 
microbiome (Golos and Dixon 2014; Munoz-Rojas˜ et al. 
2016). The implications of these changes could significantly 
influence the composition of the seed microbiome, although 
this change remains unknown. Identifying conserved species in 
seeds as they age may advance our understanding of age-
related viability of seeds and survival potential. This may 
aid in restoration and conservation efforts, shifting the focus 
to important microbes, which need to be retained during 
storage. 

Long-term exsitu storage conditions of most seeds focus on 
increasing the longevity of seeds by reducing storage tempera-
tures and seed moisture content (De Vitis et al. 2020). Seed 
endophyte Epichloë viability diminishes significantly with 
high temperature and humidity levels, as well as with length 
of storage (Rolston et al. 1986; Gundel et al. 2009; Hume et al. 
2013). Shifts in the microbial composition during storage 
favours the retention of particular microbes able to withstand 
those temperature and humidity conditions (Chandel et al. 
2021). It is unknown what effect these changes have on the 
seedling microbiome and seedling survival and provides 
future avenues for research in this emerging research area 
(Fig. 5g and h). 
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Conclusions

Incorporating microbial diversity into restoration projects 
requires some understanding of how this diversity is struc-
tured, providing management units to better survey, monitor, 
conserve and utilise these hidden but ubiquitous communities 
to improve restoration outcomes. Our understanding of how 
seed microbial communities are structured, the role within 
their host plants, how the communities change over time 
and the best methods to retain their diversity under different 
storage methods are all key knowledge gaps currently within 
the field. 

This paper provides a baseline reference system of the 
fungal endophyte diversity present within five native Australian 
species in a range of natural ecosystems, and provides a small 
glimpse into the hidden diversity in the seed of Australian 
natural ecosystems. The broad taxonomic diversity of the 
fungal species recovered within our work suggests that there 
is a large amount of hidden microbial diversity within 
Australian natural ecosystems, which we believe needs to 
be considered in exsitu seed storage, seed production areas, 
seed collection and processing methods, and direct seeding 
restoration projects. Building our knowledge on how these 
complex communities are structured, what their functions 
are and how they can change over time requires integration 
of knowledge from multiple disciplines such as microbiology, 
ecology, plant genetics and restoration ecology. Integrating 
this knowledge into conservation and restoration practices 
is an iterative process that will provide an insight into the 
hidden diversity within the seed of native Australian plants. 

Supplementary material

Supplementary material is available online. 
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