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ABSTRACT

Context. Given the effort and resources that go into collecting and maintaining seed collections, it
is crucial that we maximise their usefulness. Conservation, restoration and research rely heavily on
good quality collections in order to establish new populations, create habitat, minimise extinction
and address scientific questions. Aims. Although seed viability, excellent metadata and genetic
representativeness make for good quality collections, we provide 10 detailed reasons why the
maintenance of separate maternal lines further increases the quality and usefulness of seed
collections. Key results. Maternal line seed collections can accommodate new information, this
is especially important given the increasing longevity of seed collections. For example, maintaining
separate maternal lines facilitates accommodation of taxonomic changes, minimises the impact of
erroneous plant identifications, and facilitates separation of polyploid races, hybrids and inappropriate
lineages. Separate maternal line collections also facilitate better estimates of the genetic diversity
captured, and consequently better inform conservation translocations and the establishment of
conservation gardens and seed orchards. Separate maternal line collections can also expedite
breeding for specific traits, such as disease resistance or other selective challenges that impact on
biodiversity conservation. New seed microbiome data show how only some maternal lines contain
pathogenic fungi, reminding seed collectors and collectionsmanagers that contamination can be better
contained by keeping each maternal line separate. Conclusions and implications. Maintaining
separate maternal lines is a simple and effective way to increase the value of seed collections for
multiple applications.

Keywords: biodiversity, breeding, conservation collections, disease management, germplasm
collections, hybridisation, inbreeding, kinship, restoration ecology, seed research, population
genetics, taxonomy, translocations.

Introduction

With increasing environmental pressures on many native plant ecosystems and the looming 
extinction crisis, ex situ collections of plant material are becoming increasingly valuable. 
Seed banking is one of the most cost-effective means of ex situ storage (Engels and 
Engelmann 1998; Li and Pritchard 2009) and apart from providing some level of long-
term security, good quality seed collections have multiple applications, including plant 
propagation for restoration (León-Lobos et al. 2012) and conservation (O’Donnell and 
Sharrock 2017; Chapman et al. 2019; White et al. 2023), breeding programs (Byrne 
et al. 2018), horticulture (Li et al. 2016), and research (Sommerville et al. 2013; 
Everingham et al. 2021; Rauschkolb et al. 2022). Sourcing seed from wild populations can 
be time consuming and often require multiple visits to remote areas for each accession 
(Griffith et al. 2015). Seed harvesting itself can also have a detrimental effect on wild 
populations, especially for rare species (Bucharova et al. 2023). As long-term storage is 
one of the principal attractions of seed banking, particularly for state-of-the-art facilities, 
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collections should be of the highest possible quality, fit for  
multiple purposes, and retain potential for future, perhaps 
even unanticipated, applications. 

So, what attributes maximise long-term value and utility of 
a seed collection? Seed viability is of utmost importance and 
there are many guidelines available on how to collect, process 
and store seed to maintain viability (such as Martyn Yenson 
et al. 2021). However, it can be argued (Ellis et al. 1985) 
that even seed collections with 100% viability lose much of 
their value if they are not backed by good quality metadata 
(see Crawford et al. (2021) for details on quality metadata). 
It is increasingly accepted that collections that capture a 
good representation of the genetic diversity in a species best 
facilitate long-term conservation and restoration objectives 
through increased adaptive capacity (Reed and Frankham 
2003; Hoffmann and Sgrò 2011; Raven et al. 2013; Prober 
et al. 2019). Here, we argue that in addition to genetically 
representative, viable seed with good metadata, seed collec-
tions that maintain separate maternal lines are better suited 
to multiple downstream applications, are more amenable to 
taxonomic changes and enable a more accurate understanding 
of the level of genetic diversity in a collection. 

We present 10 reasons for the maintenance of separate 
maternal lines in seed collections. Supporting examples, 
from our original research and from the published literature, 
are provided to illustrate the argument behind the reasons. 

Reason 1: Taxonomic changes can be
accommodated

Taxonomy is the science of classifying, describing and naming 
organisms based on all available information (Godfray 2002). 
The naming of a species (nomenclature) is a hypothesis based 
on the interpretation of the available information used by a 
taxonomist to describe the species. Ideally, names represent 
distinct evolutionary lineages (Nelson 1971; Mayr and Bock 
2002). The available information can differ vastly between 
groups of organisms and across time. Some groups of 
organisms have been studied intensely, leading to a large 
amount of information available across their geographic 
distribution, including in-depth morphological characterisa-
tions, biochemical studies, phylogenetic data, population 
genetic data, and whole genome sequences (Hao et al. 2022). 
There are still many other groups that lack this level of 
information and consequently have species that are described 
from only a handful of characters that a taxonomist deems 
adequate to delineate diverged taxonomic units. As new 
information becomes available the taxonomic status of a 
lineage can change, leading to either the naming of new 
lineages (such as species) or the synonymisation of taxa. If 
seed collections identify separate maternal lines, their 
integrity can be spared from depreciation as a result of taxo-
nomic change. Otherwise, they may be rendered meaningless 

when, for example, progress reveals more than one species 
exist at a site from where seed was pooled. 

Species complexes pose a particular problem to pooled 
seed collections and can easily be avoided with separate 
maternal line collections. Here we use Ajuga australis R.Br. 
(Lamiaceae), the only species of its genus recognised in 
Australia, as a means to validate our argument. It is a 
perennial rosette-forming forb that generally inhabits riparian 
areas and drainages across a wide number of habitats on the 
eastern side of the Australian continent, from northern 
Queensland to as far as southern Tasmania (Harley et al. 
2004). It is indisputably clear that A. australis is composed 
of several distinct morphological forms that, usually based 
on anecdotal examination, appear associated with a parti-
cular habitat. However, closer observation of this morphological 
diversity demonstrates a bewildering continuum between 
these morphotypes, none of which have been examined in 
context with genetic or environmental factors. This challenge 
was evident even when four Australian species were 
recognised (Bentham 1834, 1870; Stapf 1933) and  then  
later synonymised until a comprehensive investigation of the 
taxon is made (Eichler 1965; Conn 1999). An investigation 
using genomic data of comprehensive sampled Australian 
Ajuga representing the breadth of known morphological 
and geographic diversity of the species (Wilson 2022) and 
multiple individuals from a sampling site (over 500 samples 
from 90 sites) indicated that there is geographical overlap 
in genetically distinct groups. Preliminary results from a 
phylogenetic network and principal component analysis 
shows that two recognisably distinct morphotypes collected 
at one site (samples within a radius of 30 m) are clearly 
reconciled as two distinct genetic entities (Fig. 1). Furthermore, 
at a site not more than 5 km away, a third morphotype was 
demonstrated as genetically distinct from the other two 
entities (Fig. 1). Such a result from a localised area suggests 
that care in the examination and description of this species is 
a priority. Consequently, seed collections lacking maternal 
detail for taxa associated with unresolved taxonomic groups 
are particularly susceptible to capturing an inaccurate 
representation of taxonomic lineages and genetic diversity. 
Ajuga australis is just one example of many species complexes 
awaiting detailed systematic work. 

Reason 2: The impact of erroneous plant
identifications can be minimised

Plant identification can be difficult and many plant species 
can only be identified by specialists who understand the 
intricate variation in the morphological characters involved. 
Often, floral characters are the most important morphological 
characters differentiating between species and these are often 
absent at the time of seed collecting. Although best practice 
would be to visit a population prior to seed collecting, 
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Fig. 1. Genetic relationship and the corresponding locations of Ajuga australis sens. lat. sample
sites representative of the known morphological diversity and geographic distribution in Australia.
A single nucleotide polymorphism (SNP) dataset was analysed to visualise genetic relationships
using the NeighborNet method employed in Splitstree v. 4.14.6 (Huson et al. 2008) to generate
a network. This is useful for visualising evolutionary histories in groups with substantial
reticulation (Huson and Bryant 2006). The total dataset comprised 12 321 SNPs (99.6% had a
reproducibility scores ≥ 96%). The proportion of missing data for the samples was between
8.02 and 79.9%, with a mean of 17.8%. Colour is indicative of latitudinal distribution, and
results show how the Razorback and Wilton sites, which are located approximately 10 km
apart, consist of three genetic profiles situated in distinct areas of the genetic distribution of
Ajuga australis.

bagging individuals and collecting these later, resources (time 
and money) to follow this procedure are not available to all 
seed collectors. 

Examples of challenging field identification in the absence 
of floral characters are prominent within the Orchidaceae 
family. Many Australian orchid genera comprise taxa that 
are impossible to identify without floral morphology due to 
similar vegetative characters and sympatric distribution, even 
when plants are in bud or have been recently pollinated (e.g. 
‘Key to members of the Thelymitra nuda complex in Australia’ 
as outlined by Jeanes (2013)). This greatly increases 
the chance of species misidentification when in situ seed 
is collected without prior identification of each flowering 
individual. 

Orchids represent over 16% of nationally listed threatened 
flora in Australia (Australian Government 2023), with 

multiple research institutes establishing dedicated orchid 
conservation initiatives involving seed bank storage, ex situ 
propagation, and reintroduction/translocation programs 
(see Reiter et al. (2021) as an example). Species misidentifi-
cation from in situ seed collections has been observed 
across multiple orchid genera, including Genoplesium/ 
Corunastylis, Diuris, Prasophyllum, Caladenia, and Thelymitra 
(R. Dimon, pers. obs.). Although relatively uncommon, this 
has resulted in downstream challenges for both historic and 
ongoing species-specific conservation outcomes, especially 
in establishing representative insurance populations for ex 
situ and translocation strategies. The issue most commonly 
arises from ex situ seed collections of threatened species 
growing sympatrically (and sometimes hybridising) with a 
population of a common species, which becomes indistin-
guishable post-pollination. 
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Orchidaceae have some of the smallest seeds of all 
angiosperms, producing thousands to millions of seeds per 
pod (Arditti and Ghani 2000), which means mature or 
near-dehiscing seed pods cannot be combined in the same 
collection bag in the field and later separated again post-
collection. For times when pooled seed collection has occurred 
and inaccurate species identification has been recognised, 
every individual seedling that has been propagated under 
the seed accession needs to be flowered in a nursery 
environment before species identification and further conser-
vation initiatives can occur. This process can take over 5 years 
for some orchid species and involve considerable time and 
nursery space, which could have been avoided by keeping 
separate maternal line collections. Fortunately, current 
practices for orchid seed collections are resolved by identi-
fying and tagging all individuals across the population 
during regular surveys and accessioning individual seed pods 
when collected, which allows any potential mis-identified 
collections to be traced back to a single origin, thus allowing 
all other ‘bona-fide’ seed collections from a population to be 
utilised for their targeted conservation initiatives. 

Reason 3: Facilitate the separation of
polyploid races

Genome size and number of chromosomes vary among 
and within families and species, and this is impactful at 
many scales of plant evolution and ecology (Pellicer 
and Leitch 2019). The duplication of the genome 
(polyploidisation) can result in individuals with different 
genome sizes being unable to produce fertile offspring with 
each other. Polyploid races refer to intra-specific variations 
in genome size found within taxonomic species. For some 
well-studied species, experts can tell individuals with 
differing genome sizes apart using morphological characters. 
In some cases this has led to the description of new species, 
such as the tetraploid Stylidium dilatatum W.D.Jackson and 
R.J.E.Wiltshire, distinct from the broader species complexes 
Stylidium graminifolium Sw. ex Willd (Jackson and Wiltshire 
2001). Essentially, polyploid races can be treated as different 
evolutionary races. However, for many species we do not 
know if multiple ploidy races exist and if they overlap in 
distribution. Genomic data is providing valuable information, 
but this remains restricted to species with population level 
data through projects such as Restore and Renew (Rossetto 
et al. 2019; Hogbin 2022) and preliminary work on 
reference genome sizes. For example, sites with mixed 
ploidy were identified within Allocasuarina littoralis based 
on reference samples provided by Phillip Rose (Rose et al. 
2015). 

Detailed work on Themeda triandra has characterised the 
distribution of various ploidy races (Hayman 1960), with 
the ratio of diploids to tetraploids at a site varying between 

zero and one (Ahrens et al. 2020). In general, the diploids 
and the tetraploids only rarely interbreed, and research has 
shown that each ploidy race has different adaptive regimes 
with the tetraploid outcompeting the diploid in certain 
environmental conditions (Godfree et al. 2017). Separate 
maternal line seed collections of this species will enable 
researchers to identify and select diploid or tetraploid individ-
uals for specific conditions without additional detailed work. 

Reason 4: Facilitate isolation of hybrid
maternal lines

The term hybridisation refers to the natural crossing of two 
different genotypes as either intra-specific admixture (when 
the pollen donor and the recipient are from the same species) 
or inter-specific hybridisation (when the pollen donor plant 
and the receptor plant do not belong to the same species). 
Two issues present themselves during seed collections when 
dealing with inter-specific hybridisation, and both are 
easier to isolate and deal with downstream when separate 
maternal lines are maintained. The first is that seed from a 
non-hybrid or ‘pure’ mother plant may be the product of an 
unidentified inter-species hybridisation event. The second 
is that adult hybrid plants (offspring from inter-specific 
hybridisation) are not always easy to distinguish in the field 
but can often produce seed (viable or not) that can impact 
negatively on the quality of a pooled seed collection. The 
fitness of F1 (first generation) and F2 (second generation) 
hybrid seed can range dramatically from non-viable seed to 
seedlings that do not reach maturity (see the example of 
Senecio madagascariensis and Senecio pinnatifolius; Prentis 
et al. 2007), or individuals that are very vigorous (hybrid 
vigour) and either fertile or sterile. All of these can have 
negative consequences for conservation and restoration 
outcomes. For example, if hybrid seedlings are introduced 
into a population of a rare species, they may outcompete 
the rare species (in the case of hybrid vigour), or they may 
overwhelm the genetic constitution of the rare species, 
leading to the extinction of pure parental genomes through 
later generation hybrids and back crosses (Hegde et al. 
2006; Muhlfeld et al. 2014; Todesco et al. 2016). 

Hybridisation occurs extensively in plants; relevant 
examples include both naturally occurring hybrids such as 
Allocasuarina defungens × A. littoralis (Rose et al. 2015) 
and Astrotricha crassifolia × Astrotricha longifolia/ 
Astrotricha floccosa (Warman 2018 confirmed by Yap and 
Rossetto 2020) and hybrids enabled by anthropogenic 
activity such as introductions (Senecio; Prentis et al. 2007) 
and habitat fragmentation (Eucalyptus aggregata, Field et al. 
2008). A study on the threatened Eucalyptus tetrapleura 
ascertained that hybridisation with co-occurring congeners 
Eucalyptus siderophloia and Eucalyptus fibrosa is common in 
some sub-populations (Rutherford et al. 2019). Morphology 
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did not provide clues to the origin of the hybrid individuals 
and only with genetic data could individuals be classified 
as hybrids or ‘pure’. This work highlights the dangers of 
genetic swamping of the pure individuals and the importance 
of using the correct material in management plans, parti-
cularly in translocations. 

A very similar scenario was found for the threatened 
species Eucalyptus sp. Cattai, but here hybrids were parti-
cularly common amongst the seedlings and only a small 
number of adult hybrids were identified in the field 
(Rutherford et al. 2022). The use of separate maternal line 
seed collections (sampled specifically for the study) in 
germination trials suggested that some parents are more 
prone to hybridisation than others (Yap et al. 2019). This 
information could only be extracted from the seed because 
separate maternal line collections were available for the 
work. This work demonstrates how separate maternal line 
collections can help reduce the risk of introducing hybrid 
seedlings into both translocations and living collections 
maintained for conservation purposes; and also minimise 
kinship in translocations (see Reason number 5). 

Hybrids as such are neither ‘good’ nor ‘bad’ (Hirashiki et al. 
2021). Hybrids can be valuable sources of novel genotypes, 
have been used in agricultural breeding programs (Warschefsky 
et al. 2014; Labroo et al. 2021) and horticulture (Leonhardt 
and Criley 1999) and are potentially a powerful tool in 
reintroductions (Parmesan et al. 2023). Having the option 
to include or exclude them in research, conservation or 
other applications is a positive outcome from separate 
maternal line seed collections. 

Reason 5: Isolating non-local and local
provenance maternal lines

Recent anthropogenic activity, including restoration 
conservation and horticulture, have introduced genotypes 
into new environments; sometimes where other members 
of the same species occur. In some cases, such as studies 
investigating local adaptation or conservation work where 
local provenance may want to be conserved, there is a need 
to facilitate easy separation of the introduced maternal lines 
and the local maternal lines. As an example, the planting of 
non-local provenance material is recognised as a potential 
threat to the genetic integrity of an endangered population 
of Eucalyptus camaludensis in the Hunter catchment, New 
South Wales, Australia (listed under the NSW Biodiversity 
Conservation Act 2016). A restoration project attempted to 
collect seed across the local provenance for a restoration 
program that aimed to optimise local genetic provenance in 
the revegetated populations. Separate maternal lines were 
maintained throughout the propagation process and each 
maternal tree was genotyped. Genomic data across the 
distribution of the species allowed us to identify that one of 

the maternal trees was genetically distinct from the other 
collections and clustered with material from over 400 km 
away in another catchment (the Lachlan River Catchment) 
(Fig. 2). It was subsequently deemed to be planted. Given 
that separate maternal lines were maintained, the non-local 
provenance stored seed and propagated plants were easily 
identified and could be excluded from the restoration 
plantings. Given the potential threat of planting the non-
local provenance material (swamping of local genotypes), had 
maternal lines not been maintained, the entire collection of 
seed from multiple mothers may have been abandoned and 
deemed useless, instead only a single seed lot and a few 
dozen seedlings were abandoned. Although keeping the 
maternal lines separate took more time and effort during 
the early phase of the project, in the long term it was time-
and cost-saving. 

Reason 6: Ability to select rare lineages or
alleles in a collection

The relative evolutionary contribution of lineages can be 
impacted by the dominant reproductive mode (vegetative or 
sexual), the mating system (self-fertilisation or outcrossed), 
and the level of kinship of maternal parents at a site, all of 
which can vary across species and sites (Goodwillie et al. 
2005; Barrett 2015; Whitehead et al. 2018; Bragg et al. 
2021; Lu-Irving et al. 2023). For plants that can reproduce or 
expand through clonality, selfing and biparental inbreeding, 
the distribution of genotypes at a site can be highly uneven. 
Some genotypes can be presented in only low numbers, and 
others dominate. For outcrossing species, distribution of 
families at a site can depend on pollinators and seed dispersal 
mechanisms (Feigs et al. 2022). Sampling strategies to capture 
allelic variation focus on collecting seed from a large number 
of maternal lines (e.g. Brown and Marshall 1995; Hoban 
2019). However, if we consider the downstream utilisation 
of the seed (conservation gardens in living collections, 
translocation, seed production areas or revegetation projects), 
there are three issues with pooled material regardless of how 
well the collection captures the genetic diversity at a site: 1. 
taking a random selection of seed can easily miss some less 
frequent alleles and this can result in under representation 
of allelic variation in all of the above applications, 2. taking 
a random selection can easily select individuals that are 
closely related and this can lead to inbreeding or problems 
with self-incompatibility in all of the above applications, 
and 3. the genetic component of the above applications will 
have to be far more intensive and require sequencing of a 
much larger number of individuals to identify rare alleles 
or select individuals to minimise relatedness (kinship). 

Clonal reproduction and expansion, where individuals give 
rise to new individual plants in the absence of sexual 
recombination, can result in multiple genetically identical 
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Fig. 2. A splitstree (Huson 1998; Huson et al. 2008) of Eucalyptus camaldulensis samples genotyped using DArTseq, showing the
clustering of Hunter Valley maternal trees (blue nodes), Lachlan River catchment trees (red nodes), and the planted Hunter Valley
maternal tree (purple node). This illustrates that although collected from a local tree, the maternal line does not represent a local
provenance and should not be treated as such in conservation, restoration and research activities.

individuals at a site. Although there are numerous known individual belongs to (Fig. 3). At one site (‘Marsh’) 10 trees 
examples of plants that reproduce through clonal reproduction, were genotyped and amongst these, two genets were 
there are likely many that we are unaware of (Klimes et al. identified, with nine and one individual trees (ramets) 
1997; Barrett 2015). A conservation genomic study conducted representing each genet (green and orange dots respectively in 
for management of the rare and threatened species, lower right of Fig. 3). The distance between ramets belonging 
Daphnandra johnsonii Schodde, a rainforest tree in New to the same genet were sometimes in the hundreds of metres 
South Wales (Australia), indicated that clonality is common (such as at ‘Curra’), whereas in other instances genomic data 
in this species, preventing successful production of seeds, but revealed distinct genets among spatially proximate trees 
at some sites more than one genet are present (Rossetto et al. (such as at ‘Fount’). If seed were collected at any of these 
2021). The number of genets at a site differ, the genets do not sites and pooled, each of the rare genotypes would be very 
occur in equal numbers and their spatial distribution on the hard to separate from the rest; on the other hand, separate 
landscape does not provide clues as to which genet an maternal line collections would allow for a much faster and 
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Curra Four Genets 

100 m 

Fount Three Genets Marsh Two Genets 

100 m 

100 m 

Fig. 3. Each image represents an aerial view of a site of Daphnandra johnsonii, with the coloured
dots indicating the location of genotyped individuals at each site. At each site, genets identified with
SNP data are coloured differently. No genet was shared between sites. The genets were determined
from single nucleotide polymorphisms data (SNPs) following opreviously described workflows
(Bragg et al. 2020). Kinship (relatedness) estimates were used for assessing the degree of
clonality across the plants of D. johnsonii and identifying the genets. The estimates were
calculated using the PLINK Method of Moments estimator implemented in SNPrelate (Zheng
et al. 2012).

more cost-effective way of identifying the genetically distinct 
accessions. 

A similar scenario would involve species where biparental 
inbreeding and self-fertilisation are the prevalent mating 
systems at a site (Lu-Irving et al. 2023). At sites where there 
are high levels of selfing, but multiple families present, the 
level of relatedness (kinship) can change dramatically across 
the local site and some genotypes or alleles can occur in very 
low frequency (such as for Acacia purpureopetala, van der 
Merwe et al. 2021a). Pooling seed from such sites will 
result in rare alleles getting lost amongst the more common 
alleles. Pooled accession will be a problem where the seed 
needs to be applied to a conservation translocation where 
plants are selected to minimise kinship amongst individuals 
used in planting (Bragg et al. 2020) to reduce the potential 
effects of inbreeding and inbreeding depression and maximise 

mixing of novel genotypes. It will be necessary to genotype far 
more individuals prior to planting to minimise related-
ness, but if separate maternal lines were maintained then 
genotyping only a few of each accession will provide details 
about relatedness. 

Reason 7: Informs the effect of trait variation
across maternal lines

Functional traits involved in seed germination (such as 
optimum germination temperature, germination success, 
germination rate and seed viability) vary across species, 
populations, and, importantly, maternal lines (Roach and 
Wulff 1987; Donohue 2009). 

We collected seed for Acacia linifolia (Vent.) Willd and 
Acacia terminalis (Salisb.) J.F.Macbr. across multiple sites 
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and maternal lines. After removing visibly undeveloped and 
deformed seed we used a medical diagnostic X-ray machine to 
detect unfilled seed (predated and seed without intact 
embryos). We found that the proportion of unfilled seeds 
varied substantially by site and maternal line (Fig. 4). Plants 
at some sites suffered little seed predation and produced 
consistently high proportions of filled seeds with intact 
embryos (e.g. A. terminalis at Currarong and A. linifolia at 
Kurrajong and Putty Rd.). However, at other sites, rates of 
seed predation were highly variable among maternal lines, 
with some plants producing higher proportions of filled 
seed than others (e.g. proportions of filled seed produced by 
A. terminalis plants from Tomerong varied from 6 to 88%). As 
a result, numbers of seed from maternal lines after removal of 
unfilled seed were not equal. We followed this up by tracking 
the maternal lines during germination and again found large 
variation across maternal lines with some maternal lines at 
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near 100% germination and others 0% (Fig. 4 bottom). 
Thus, not all the maternal lines contribute equally to a seed 
collection and pooled seed collections can create the false 
impression that each maternal line is represented equally in 
a collection; whereas in fact some are completely absent, 
and others only appear in low frequency. This can also 
exacerbate conditions for Reason number 8, discussed below. 

Reason 8: Ability to document and
understand the effects of imposed selection

Each step of seed processing and storage can affect genotypes 
differently and impose artificial selective filters on seed 
collections (Nagel et al. 2015), potentially leading to loss of 
genetic diversity (genetic erosion). If seed from different 
maternal lines is pooled, this loss will be undetected and a 
decrease in seed viability could be perceived as an even 
loss across all the maternal lines presented in the collection. 
Non-random mortality during storage (Bennington and 
McGraw 1995; sometimes referred to as the ‘invisible fraction’ 
sensu Grafen 1988) can also impact research interpretations 
derived from such seed collections (for more details see Weis 
2018). Although little work has been done to understand 
genetic erosion in germplasm collections of non-crop species, 
detailed studies of crops have highlighted the uneven loss 
of genotypes or cultivars during storage and processing 
including samples from divergent angiosperm lineages such 
as flax (Balouchi et al. 2017), rice (Kameswara Rao and 
Jackson 1997; Lee et al. 2019), barley (Nagel et al. 2015) and 
cucumber (Hu et al. 2010). Maintaining separate maternal 
lines during storage can increase our understanding of loss 
of lineages during storage when retesting of viability and 
germination are completed. This information can inform 
recollecting to capture lost alleles and, when possible and 
needed, change processing or storage conditions to maintain 
maximum genetic diversity. 

Reason 9: Expedite breeding programs using
heritable traits

Fig. 4. These graphs represent the proportion of seeds per mother
that were filled (top) and from the filled seeds germinated (bottom).
Seeds were from two species of Acacia collected from multiple sites.
The blue crosses each represent seed from a maternal line from a site
for A. terminalis and the red circles represent A. linifolia. NP, national
park; SF, state forest.

Trait-based breeding programs have been vital in the 
development of new crop and forestry lines, incorporating 
traits available in elite germplasm and other genetic resources 
(Cooper et al. 2021). In some ex situ collections, it is helpful to 
predict or manage plant traits. For example, if a plant species 
is threatened with extinction due to a disease, it might be 
useful to identify resistant individuals (if they exist) and 
promote their contribution to future generations. If a collection 
is being used to produce seeds for restoration across land-
scapes, it might be useful to predict environmental tolerances 
of progeny and to distribute them among planting sites 
accordingly. To use trait information in this way, the trait 

413

www.publish.csiro.au/bt


M. M. van der Merwe et al. Australian Journal of Botany

must be heritable, and predicting trait values usually requires 
trait measurements for a set of individuals with some known 
genetic relationships to each other. This underscores the 
potential importance of tracking seeds in maternal lines, 
which promotes opportunities to generate datasets with 
trait measurements for panels of half-siblings. 

For example, the introduction of Myrtle rust (Austropuccinia 
psidii) into Australia has caused numerous previously common 
plant species to become threatened with extinction (Fensham 
and Radford-Smith 2021) and is impacting populations of 
keystone species in important habitats, such as Melaleuca 
quinquenervia in swamp vegetation (Pegg et al. 2018). 
An extensive separate maternal line seed collection of 
M. quinquenervia enabled the estimation of rust resistance 
traits, including in many half-siblings. This information 
enabled the establishment of a seed production area at the 
Australian Botanic Garden Mount Annan that is deliberately 
enriched with individuals from families that exhibited high 
levels of resistance, while also maintaining substantial genetic 
diversity. Progeny from this planting might eventually be 
used to restore swamp habitat with relatively rust resistant 
seeds. These activities were enabled by the availability of 
seeds with known familial relationships for use in experiments 
and planting (i.e. separate maternal line seed collections) and 
relevant genetic and resistance data. 

Reason 10: Contain contamination (pest and
diseases)

Microbes can exist as pathogens within and on seeds causing 
seed decay and plant disease (Agarwal and Sinclair 1996). 
Seed pathogenic fungi and bacteria greatly affect seed 
quality, and can cause diseases that impact rates of germination 
and establishment (Aftab et al. 2008). They can also remain 
dormant but viable within stored seed for long periods of 
time (Brodal and Asdal 2021). Some seed pathogens can act as 
vectors, with some transmitted from generation to generation, 
providing a means by which a disease can become established 
at a site (Elmer 2001). 

Seeds have been shown to be associated with both 
beneficial, saprophytic and pathogenic species (Tarquinio 
et al. 2021; Chandel et al. 2022; Mertin et al. 2022). These 
micro-organisms enter seed via different pathways and 
as such can be restricted to a single maternal plant or site 
(Gebeyaw 2020). Contact of non-infected with infected seed 
can provide a means by which pathogens transmit between 
individuals (Nallathambi et al. 2020). Recent work indicates 
that microbes can stay viable in seed collections for extended 
periods of time. 

‘Maternal effects’ can shape seed fungal communities. In 
particular, the maternal source of a seed explained a larger 
part of the variation in seed community composition 
than environment in Quercus petraea (Fort et al. 2021). 

Additionally, the importance of microbial inheritance in 
forming the initial plant microbiome, and the role of the 
maternal plant within this, suggest that the maternal plant 
plays a key role in the formation and transmission of seed and 
seedling microbial communities (Abdelfattah et al. 2023). 
Keeping maternal lines separate within seed collections may 
retain communities more reflective of the natural processes 
that can shape seed communities. Not only will separate 
maternal line seed collections contain potential pathogens 
but also facilitate more research in this emerging field. 

We investigated microbe communities in Themeda triandra 
seed and present the results for two sites (Fig. 5). We found 
that the communities vary in composition, with some maternal 
plants housing pathogenic species and others not. For 
example, in Site 1 most plants house Alternaria alternata 
and Ascochyta herbicola, but only seed from maternal plant 
five houses the plant pathogens Diaporthe infecunda (Moreira 
et al. 2020) and Curvularia trifolii (Falloon 1976) (Fig. 5). 
Similarly, in Site 2 Maternal Plant 1 was the only one to 
house the plant pathogens Epicoccum nigrum and Epicoccum 
huancayense, (Taguiam et al. 2021) with them forming the 
dominant part of the community for that maternal line. 
These results indicate that seed communities differ between 
maternal plants, highlighting the importance of the maternal 
plant in shaping seed communities. 

Synthesis

We outlined 10 reasons why the maintenance of separate 
maternal lines increases the value and applications of seed 
collections. Most of our reasoning comes down to the fact 
that when dealing with a pooled seed collection it is 
difficult (if not impossible) to sort a pooled collection into 
evolutionary lineages (genotypes, families, species). We can 
retrospectively use genetic data to separate out the lineages 
but this is destructive, and wasteful of time, space and cost. 

Some of the listed reasons are directly linked or can 
escalate each other, for example, we would like to avoid using 
incorrect taxa (Reasons 1, 2 and 4) in conservation transloca-
tions where we also want to maximise genetic diversity but 
avoid high rates of kinship (Reason 6). Another example 
would be where we would like to set up a seed production 
area for a species where mixed genome sizes have been 
recorded (such as A. littoralis); we need to use only diploid 
individuals (Reason 4) but to avoid inbreeding we want to 
avoid individuals that are closely related (Reason 6). 
Reasons 6, 7 and 8 all play an important role in determining 
how much genetic diversity is held within a seed collection 
and how we can monitor and assess changes in diversity 
across the life of a collection. 

Unlike pooled collections, we can use separate maternal 
line collections effectively to evaluate and monitor genetic 
diversity in a seed collection. Seedlings produced during 
standard viability tests that are routinely conducted in many 
seedbanks can be used for DNA extractions and sequencing. 
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Fig. 5. Relative abundance (%) of seed fungal species within 50 mg of Themeda triandra seed pooled to each maternal plant (n = 8) at two
sites in New South Wales, Australia. Data is based on ~300 bp of the ITS2 (internal transcribed spacer 2) region, with species identity
determined by comparison with the UNITE database (Abarenkov et al. 2010). The potentially pathogenic fungus, Curvularia trifolii
(fucshia colour) was only identified in Maternal Plant 5 at Site 1.

Fortunately, the genomic tools and workflows needed 
to assess genetic diversity and representativeness have 
become increasingly accessible (Rossetto et al. 2019, 2021). 
Conservation and research collection managers can screen 
small numbers of seed from each separately stored maternal 
line, and use the data to establish the identity and origin 
(species, hybrid or non-hybrid, genome size and provenance, 
Reasons 1, 2, 3, 4 and 5) of the accession, estimate the genetic 
variation (based on allelic variation and relatedness) for each 
maternal line and quantify the overall collection (all maternal 
lines for a site, species or area; Reason 6). This information 
can then form the backbone for monitoring the collection 
(Reasons 7 and 8) and planning augmentation or recollection 
if needed. This will also facilitate screening for heritable traits 
(Reason 9) and tracing them back to a specific lineage or 
mother. 

A wide array of scientific studies utilises seeds in experi-
ments (seed biology, ecophysiology, resurrection ecology, 
microbiology, to name a few) and for optimal interpretative 
power the experimental design should be representative of 
the standing diversity within the species or population of 
the species, rather than represent a mixed (Reasons 1, 2, 3, 4 
and 5 above) or small non-representative gene pool (Reasons 
6, 7 and 8 above). This can only be achieved if a genetically 
representative collection of individuals is available for the 
experimental work. Although genetic data should ideally 

inform the representativeness of a collection, the availability 
of separate maternal lines is, at a minimum, a good starting 
point for many studies. 

Prior to establishing either a translocation population or a 
seed orchard, genetic data should be used to select the 
individuals from the collection to be planted. The availability 
of separate maternal line collections can greatly expedite this 
process and decrease the costs associated with obtaining 
genetic data because only a small representation of each 
maternal line will need to be used and genotyped. When using 
seed in restoration and conservation applications we want to 
be able to avoid inbreeding and maximise evolutionary 
potential or even select for a specific trait (Bragg et al. 2022). 
With separate maternal line seed collections, we can avoid 
using seed from the same mother as well as spatially separate 
maternal lines during planting. After careful monitoring it will 
also be possible to augment restored populations with 
individuals from selected maternal lines. 

There is much to learn from the elite germplasm collections 
available for crop development and this body of work has 
already established that separate maternal line collections 
can best facilitate multiple downstream applications (Nagel 
et al. 2015; Jia et al. 2017; Solberg et al. 2020). While the 
goals and constraints of conservation germplasm collections 
differ from those of crop improvement collections, the value 
of separating maternal lines has already begun to be recognised 

415

Phaeosphaeria microscopica

Site 1 Site 2

1

100%

75%

50%

25%

0%

Didymella maydis

Paraphaeosphaeria pilleata

Ascochyta rabiei

Aureobasidium melanogenum

Pestalotiopsis adusta

Neophaeomoniella eucalyptii

Antennariella placitae

Cladosporium flabelliforme

Acremonium implicatum

Alternaria alternata

Epicoccum nigrum

Curvularia trifolii

Aurobasidium pullulans

Diaporthe infecunda
Ascochyta herbicola

Pestalotiopsis clavata

Epicoccum huancayense

Preussia sp.

Phomopsis vaccinii

Pestalotiopsis rhododendri

<5% Abundance

Fungal species

2 3 4 5 6 7 8 1
Maternal plant number

2 3 4 5 6 7 8

www.publish.csiro.au/bt


M. M. van der Merwe et al. Australian Journal of Botany

and incorporated into seed collecting guidelines for plant 
conservation and restoration (e.g. Guerrant et al. 2014; Center 
for Plant Conservation 2019; van der Merwe et al. 2021b). 
Resources (time, money and seed availability) for conserva-
tion collections of wild species are often limited, but the 
investment of additional resources to label, track and store 
separate maternal lines yields high returns by unlocking 
myriad benefits and applications that enhance the ultimate 
value of the collections. To optimise use of limited resources 
to achieve the best conservation outcomes, we need to 
maximise our efforts by constantly increasing the quality of 
our germplasm collections. One step forward would be to 
maintain separate maternal lines. 
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