Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Towards a Better Understanding of ‘Delocalized Charge’ in Ionic Liquid Anions

Ekaterina I. Izgorodina A C , Maria Forsyth B and Douglas R. MacFarlane A C
+ Author Affiliations
- Author Affiliations

A School of Chemistry, Monash University, Clayton VIC 3800, Australia.

B Department of Materials Engineering, Monash University, Clayton VIC 3800, Australia.

C Corresponding authors. Email: katya.izgorodina@sci.monash.edu.au; doug.macfarlane@sci.monash.edu.au

Australian Journal of Chemistry 60(1) 15-20 https://doi.org/10.1071/CH06304
Submitted: 21 August 2006  Accepted: 30 October 2006   Published: 29 January 2007

Abstract

One of the main characteristics that are attributed to ionic liquids (especially those with a low melting point) is that the anions comprising the ionic liquids possess a certain degree of charge delocalization as compared to anions in traditional molten salts. Based on the proton affinity equilibrium we proposed a new energetic criterion that can be used as a measure of charge delocalization. The proposed proton affinity comparison quantifies the extent to which ionic liquid anions are delocalized. Thus it should lead to a better understanding towards the design of task-specific ionic liquids. Therefore, this criterion can be applied to newly designed anions to assure that the extent of charge delocalization falls within the same range of values on the proton affinity scale as other commonly used ionic liquid anions.


Acknowledgment

E.I.I. gratefully acknowledges generous allocations of computing time from the National Facility of the Australian Partnership for Advanced Computing.


References


[1]   S. A. Forsyth, J. M. Pringle, D. R. MacFarlane, Aust. J. Chem. 2004, 57,  113.
        | CrossRef |   

[2]   P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis 2002 (Wiley-VCH: Weinheim).

[3]   C. Chiappe, D. Pieraccini, J. Phys. Org. Chem. 2005, 18,  275.
        | CrossRef |   

[4]   R. F. W. Bader, in Encyclopedia of Computational Chemistry 1998 (John Wiley & Sons: New York, NY).

[5]   W. Cornell, C. Chipot, in Encyclopedia of Computational Chemistry 1998 (John Wiley & Sons: New York, NY).

[6]   T. Helgaker, P. Jorgensen, J. Olsen, Molecular Electronic-Structure Theory 2000 (Wiley-VCH: Chichester).

[7]   M. L. Coote, E. H. Krenske, E. I. Izgorodina, Macromol. Rapid Commun. 2006, 27,  473.
        | CrossRef |   

[8]   E. I. Izgorodina, M. L. Coote, Chem. Phys. 2006, 324,  96.
        | CrossRef |   

[9]   A. A. Toy, H. Chaffey-Millar, T. P. Davis, M. H. Stenzel, E. I. Izgorodina, M. L. Coote, C. Barner-Kowollik, Chem. Commun. 2006,  835.
        | CrossRef |   

[10]   F. Jensen, in Introduction to Computational Chemistry 1999 (John Wiley: New York, NY).

[11]   M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., et al., Gaussian 03, rev. C.02 2004 (Gaussian: Wallingford, CT).

[12]   H.-J. Werner, P. J. Knowles, R. Lindh, M. Schütz, P. Celani, T. Korona, F. R. Manby, G. Rauhut, et al., MOLPRO 2002.6 2003 (University of Birmingham: Birmingham).

[13]   L. A. Curtiss, P. C. Redfern, K. Raghavachari, V. Rassolov, J. A. Pople, J. Chem. Phys. 1999, 110,  4703.
        | CrossRef |   

[14]   S. Grimme, J. Chem. Phys. 2003, 118,  9095.
        | CrossRef |   

[15]   Y. Jung, C. Lochan, A. D. Dutoi, M. Head-Gordon, J. Chem. Phys. 2004, 121,  9793.
        | CrossRef |   

[16]   T. Vreven, K. Morokuma, Theor. Chem. Acc. 2003, 109,  125.
        | CrossRef |   

[17]   E. I. Izgorodina, M. L. Coote, J. Phys. Chem. A 2006, 110,  2486.
        | CrossRef |   

[18]   L. A. Curtiss, K. Raghavachari, P. C. Redfern, J. A. Pople, J. Chem. Phys. 2000, 112,  7374.
        | CrossRef |   

[19]   E. I. Izgorodina, M. L. Coote, L. Radom, J. Phys. Chem. A 2005, 109,  7558.
        | CrossRef |   

[20]   S. Grimme, Angew. Chem. Int. Ed. 2006, 45,  4460.
        | CrossRef |   

[21]   T. M. Gilbert, J. Phys. Chem. A 2004, 108,  2550.
        | CrossRef |   

[22]   X.-Q. Yao, X.-J. Hou, H. Jiao, H.-W. Xiang, Y.-W. Li, J. Phys. Chem. A 2003, 107,  9991.
        | CrossRef |   

[23]   C. E. Check, T. M. Gilbert, J. Org. Chem. 2005, 70,  9828.
        | CrossRef |   

[24]   A. D. Becke, J. Chem. Phys. 1993, 98,  5648.
        | CrossRef |   

[25]   J. K. Kang, C. B. Musgrave, J. Chem. Phys. 2001, 115,  11040.
        | CrossRef |   

[26]   A. D. Boese, J. M. L. Martin, J. Chem. Phys. 2004, 121,  3405.
        | CrossRef |   

[27]   M. L. Coote, A. Pross, L. Radom, Org. Lett. 2003, 5,  4689.
        | CrossRef |   

[28]   A. P. Scott, L. Radom, J. Phys. Chem. 1996, 100,  16502.
        | CrossRef |   

[29]   P. Wasserscheid, W. Keim, Angew. Chem. Int. Ed. 2000, 39,  3772.
        | CrossRef |   

[30]   S. A. Forsyth, S. R. Batten, Q. Dai, D. R. MacFarlane, Aust. J. Chem. 2004, 57,  121.
        | CrossRef |   

[31]   A. Noda, K. Hayamizu, M. Watanabe, J. Phys. Chem. B 2001, 105,  4603.
        | CrossRef |   

[32]   J. Golding, S. Forsyth, D. R. MacFarlane, M. Forsyth, G. B. Deacon, Green Chem. 2002,  4.
         



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (312 KB) Export Citation Cited By (41)