Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Carbon Nanotube Free-Standing Membrane of Pt/SWNTs as Catalyst Layer in Hydrogen Fuel Cells

Jason M. Tang A D , Kurt Jensen B D , Wenzhen Li B D , Mahesh Waje B D , Paul Larsen B D , Palanisamy Ramesh A , Mikhail E. Itkis A , Yushan Yan A B D E and Robert C. Haddon A C D E
+ Author Affiliations
- Author Affiliations

A Center for Nanoscale Science and Engineering, University of California, Riverside, Riverside, CA 92521-0403, USA.

B College of Engineering—Center for Environmental Research and Technology, University of California, Riverside, Riverside, CA 92521-0403, USA.

C Department of Chemistry, University of California, Riverside, Riverside, CA 92521-0403, USA.

D Department of Chemical & Environmental Engineering, University of California, Riverside, Riverside, CA 92521-0403, USA.

E Corresponding authors. Email: haddon@ucr.edu; Yushan.Yan@ucr.edu

Australian Journal of Chemistry 60(7) 528-532 https://doi.org/10.1071/CH06411
Submitted: 1 November 2007  Accepted: 27 February 2007   Published: 9 July 2007

Abstract

A simple and promising fuel-cell architecture is demonstrated using a carbon nanotube free-standing membrane (CNTFSM) made from Pt supported on purified single-walled carbon nanotubes (Pt/SWNT), which act as the catalyst layer in a hydrogen proton exchange membrane fuel cell without the need for Nafion in the catalyst layer. The CNTFSM made from Pt/SWNT at a loading of 0.082 mg Pt cm–2 exhibits higher performance with a peak power density of 0.675 W cm–2 in comparison with a commercially available E-TEK electrocatalyst made of Pt supported on XC-72 carbon black, which had a peak power density of 0.395 W cm–2 at a loading of 0.084 mg Pt cm–2 also without Nafion in the catalyst layer.


Acknowledgments

This research was supported by DOD/DARPA/DMEA under Award no. DMEA90–02–2-0216.


References


[1]   Hydrogen, Fuel Cells & Infrastructure Technologies Program: Multi-Year Research, Development and Demonstration Plan: Planned Program Activities for 2003–2010, in Energy Efficiency and Renewable Energy 2005 (U.S. Department of Energy: Washington, D.C., WA).

[2]   H. A. Gasteiger, S. S. Kocha, B. Sompalli, F. T. Wagner, Appl. Catal. B: Environ. 2005, 56,  9.
        | CrossRef |   

[3]   M. K. Debe, A. K. Schmoeckel, G. D. Vernstrom, R. Atanasoski, J. Power Sources 2006, 161,  1002.
        | CrossRef |   

[4]   Debe M. K., Handbook of Fuel Cells-Fundamentals, Technology, and Applications (Eds W. Vielstich, H. A. Gasteiger, A. Lamm) 2003, Vol. 3, Ch. 45, p. 576 (John Wiley & Sons: Chichester).

[5]   C. Wang, M. Waje, X. Wang, J. M. Tang, R. C. Haddon, Y. Yan, Nano Lett. 2004, 4,  345.
        | CrossRef |   

[6]   Z. Liu, X. Lin, J. Y. Lee, W. Zhang, M. Han, M. G. Leong, Langmuir 2002, 18,  4054.
        | CrossRef |   

[7]   W. Li, C. Liang, J. Qiu, W. Zhou, H. Han, Z. Wei, G. Sun, Q. Xin, Carbon 2002, 40,  791.
        | CrossRef |   

[8]   W. Li, C. Liang, W. Zhou, J. Qiu, H. Li, G. Sun, Q. Xin, Carbon 2004, 42,  436.
        | CrossRef |   

[9]   W. Li, C. Liang, W. Zhou, J. Qiu, Z. Zhou, G. Sun, Q. Xin, J. Phys. Chem. B 2003, 107,  6292.
        | CrossRef |   

[10]   T. Yoshitake, Y. Shimakawa, S. Kuroshima, H. Kimura, T. Ichihashi, T. Kubo, D. Kasuya, K. Takahashi, F. Kokai, M. Yudasaka, S. Iijima, Physica B (Amsterdam) 2002, 323,  124.
         

[11]   M. M. Waje, X. Wang, W. Li, Y. Yan, Nanotechnology 2005,  S395.
        | CrossRef |   

[12]   X. Wang, M. Waje, Y. Yan, Electrochem. Solid St. 2005, 8,  A42.
        | CrossRef |   

[13]   W. Li, X. Wang, Z. Chen, M. Waje, Y. Yan, Langmuir 2005, 21,  9386.
        | CrossRef |   

[14]   G. Girishkumar, M. Rettker, R. Underhile, D. Binz, K. Vinodgopal, P. McGinn, P. Kamat, Langmuir 2005, 21,  8487.
        | CrossRef |   

[15]   G. Girishkumar, T. D. Hall, K. Vinodgopal, P. V. Kamat, J. Phys. Chem. B 2006, 110,  107.
        | CrossRef |   

[16]   A. Kongkanand, S. Kuwabata, G. Girishkumar, P. Kamat, Langmuir 2006, 22,  2392.
        | CrossRef |   

[17]   G. Girishkumar, K. Vinodgopal, P. V. Kamat, J. Phys. Chem. B 2004, 108,  19960.
        | CrossRef |   

[18]   D. A. Stevens, M. T. Hicks, G. M. Haugen, J. R. Dahn, J. Electrochem. Soc. 2005, 152,  A2309.
        | CrossRef |   

[19]   X. Wang, W. Li, Z. Chen, M. Waje, Y. Yan, J. Power Sources 2006, 158,  154.
        | CrossRef |   

[20]   J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y.-S. Shon, T. R. Lee, D. T. Colbert, R. E. Smalley, Science 1998, 280,  1253.
        | CrossRef |   

[21]   J. M. Tang, M. E. Itkis, C. Wang, X. Wang, Y. Yan, R. C. Haddon, Micro Nano Lett. 2006, 1,  62.
        | CrossRef |   

[22]   Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, A. G. Rinzler, Science 2004, 305,  1273.
        | CrossRef |   

[23]   D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, C. Zhou, Nano Lett. 2006, 6,  1880.
        | CrossRef |   



Rent Article (via Deepdyve) Export Citation Cited By (10)