Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Self-ordering Electrochemistry: A Simple Approach for Engineering Nanopore and Nanotube Arrays for Emerging Applications*

Dusan Losic A C , Leonara Velleman B , Krishna Kant A , Tushar Kumeria A , Karan Gulati A , Joe G. Shapter B , David A. Beattie A and Spomenka Simovic A
+ Author Affiliations
- Author Affiliations

A University of South Australia, Ian Wark Research Institute, Mawson Lakes Campus, Mawson Lakes, Adelaide, SA 5095, Australia.

B Flinders University, School of Chemical and Physical Science, Bedford Park, Adelaide, SA 5042, Australia.

C Corresponding author. Email: dusan.losic@unisa.edu.au

Australian Journal of Chemistry 64(3) 294-301 https://doi.org/10.1071/CH10398
Submitted: 31 October 2010  Accepted: 23 December 2010   Published: 11 March 2011

Abstract

In this paper, we present recent work from our group focussed on the fabrication of nanopore and nanotube arrays using self-ordered electrochemistry, and their application in several key areas including template synthesis, molecular separation, optical sensing, and drug delivery. We have fabricated nanoporous anodic aluminium oxide (AAO) with controlled pore dimensions (20–200 nm) and shapes, and used them as templates for the preparation of gold nanorod/nanotube arrays and gold nanotube membranes with characteristic properties such as surface enhanced Raman scattering and selective molecular transport. The application of AAO nanopores as a sensing platform for reflective interferometric detection is demonstrated. Finally, a drug release study on fabricated titania nanotubes confirms their potential for implantable drug delivery applications.


References

[1]  S. Mann, G. A. Ozin, Nature 1996, 382, 313.
         | CrossRef | 1:CAS:528:DyaK28Xks1WgurY%3D&md5=7549c3c972da37dbe200e8b5fbd50c68CAS | open url image1

[2]  R. W. Murray, Chem. Rev. 2008, 108, 2688.
         | CrossRef | 1:CAS:528:DC%2BD1cXntlKrsbY%3D&md5=aa1d8b387f0e602cfdc03111a70fa6a9CAS | 18558753PubMed | open url image1

[3]  C. R. Martin, Z. S. Siwy, Science 2007, 317, 331.
         | CrossRef | 1:CAS:528:DC%2BD2sXotFWltLk%3D&md5=2bb714ef9bae701d9f4f83f13f5c0584CAS | 17641190PubMed | open url image1

[4]  M. Ulbricht, Polymer 2006, 47, 2217.
         | CrossRef | 1:CAS:528:DC%2BD28XislWls7w%3D&md5=4b372d9b658882889f6d27425c2521ceCAS | open url image1

[5]  C. C. Striemer, T. R. Gaborski, J. L. McGrath, P. M. Fauchet, Nature 2007, 445, 749.
         | CrossRef | 1:CAS:528:DC%2BD2sXhslSqsrg%3D&md5=f835e4a5376969f7c039c7fdb4dfa4a7CAS | 17301789PubMed | open url image1

[6]  M. Steinhart, R. B. Wehrspohn, U. Gosele, J. H. Wendorff, Angew. Chem. Int. Ed. 2004, 43, 1334.
         | CrossRef | 1:CAS:528:DC%2BD2cXivFSksb4%3D&md5=5a298d9a1f63251b1a5bd008d1f72a6cCAS | open url image1

[7]  W. Lee, M. Alexe, K. Nielsch, U. Gosele, Chem. Mater. 2005, 17, 3325.
         | CrossRef | 1:CAS:528:DC%2BD2MXks1KhurY%3D&md5=72e9b6d643df6ca3a9fc03fa0fc2f1faCAS | open url image1

[8]  P. Apel, Radiat. Meas. 2001, 34, 559.
         | CrossRef | 1:CAS:528:DC%2BD3MXmsVemt74%3D&md5=7e755462d42dd2fe499233f9e25209ccCAS | open url image1

[9]  A. Ghicov, P. Schmuki, Chem. Commun. 2009, 2791.
         | CrossRef | 1:CAS:528:DC%2BD1MXlslyqurY%3D&md5=c734defedddb9e59d49437b2c5b26015CAS | open url image1

[10]  H. Cölfen, S. Mann, Angew. Chem. Int. Ed. 2003, 42, 2350.
         | CrossRef | open url image1

[11]  J. W. Diggle, T. C. Downie, S. W. Goulding, Chem. Rev. 1969, 69, 365.
         | CrossRef | 1:CAS:528:DyaF1MXks1entbY%3D&md5=422f8ac492d141543d8c9fb180b782b7CAS | open url image1

[12]  O. Jessensky, F. Muller, U. Gosele, Appl. Phys. Lett. 1998, 72, 1173.
         | CrossRef | 1:CAS:528:DyaK1cXhsVyrsL8%3D&md5=b404085b0d3b3650e7b75fa3ca0feff3CAS | open url image1

[13]  W. Lee, R. Ji, U. Gosele, K. Nielsch, Nat. Mater. 2006, 5, 741.
         | CrossRef | 1:CAS:528:DC%2BD28XovFyks74%3D&md5=a74a480d9eba0e38102d4341321f51e8CAS | 16921361PubMed | open url image1

[14]  H. Chik, J. M. Xu, Mater. Sci. Eng. Rep. 2004, 43, 103.
         | CrossRef | open url image1

[15]  C. A. Grimes, J. Mater. Chem. 2007, 17, 1451.
         | CrossRef | 1:CAS:528:DC%2BD2sXjslelu7g%3D&md5=035172549f54c8ddb95ad55394e307ffCAS | open url image1

[16]  G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, Sol. Energy Mater. Sol. Cells 2006, 90, 2011.
         | CrossRef | 1:CAS:528:DC%2BD28XlvF2iu7Y%3D&md5=6934f138220c1ad8cb40abc09df63915CAS | open url image1

[17]  J. Park, S. Bauer, P. Schmuki, K. von der Mark, Nano Lett. 2009, 9, 3157.
         | CrossRef | 1:CAS:528:DC%2BD1MXpsFamsrY%3D&md5=023f73f016df6286a284c8140ff464b9CAS | 19653637PubMed | open url image1

[18]  P. Roy, D. Kim, I. Paramasivam, P. Schmuki, Electrochem. Commun. 2009, 11, 1001.
         | CrossRef | 1:CAS:528:DC%2BD1MXltVOktbY%3D&md5=d6c3068111db192ca0e5bfb083c46704CAS | open url image1

[19]  H. Masuda, F. Hasegwa, S. Ono, J. Electrochem. Soc. 1997, 144, L127.
         | CrossRef | 1:CAS:528:DyaK2sXjvVGkt70%3D&md5=62bd7bd1cb364c46069b194fd8e32364CAS | open url image1

[20]  H. Masuda, K. Fukuda, Science 1995, 268, 1466.
         | CrossRef | 1:CAS:528:DyaK2MXmtFKktbc%3D&md5=122d94b0a7de2495ec2d637f76d8aac5CAS | 17843666PubMed | open url image1

[21]  G. E. Thompson, Thin Solid Films 1997, 297, 192.
         | CrossRef | 1:CAS:528:DyaK2sXktVGit7k%3D&md5=b44f270499a2434ed2b837735714cce8CAS | open url image1

[22]  S. Ono, H. Asoh, M. Saito, M. Ishiguro, Electrochemistry 2003, 71, 105.
         | 1:CAS:528:DC%2BD3sXhtVyqurc%3D&md5=c78d1809d5b1c906c77f99a0aceee471CAS | open url image1

[23]  M. Lillo, D. Losic, J. Membr. Sci. 2009, 327, 11.
         | CrossRef | 1:CAS:528:DC%2BD1MXhtVWju7o%3D&md5=2f2758db8a6a3232c46a8c7c7e8bd2baCAS | open url image1

[24]  D. Losic, M. Lillo, D. Losic, Small 2009, 5, 1392.
         | CrossRef | 1:CAS:528:DC%2BD1MXotFKjsrg%3D&md5=f75cf7d8080f72500d4f12052326fef6CAS | 19296559PubMed | open url image1

[25]  D. Losic, D. Losic, Langmuir 2009, 25, 5426.
         | CrossRef | 1:CAS:528:DC%2BD1MXltVCgsr8%3D&md5=29a70931c493345815b95e11e61297c9CAS | 19391576PubMed | open url image1

[26]  R. E. Sabzi, K. Kant, D. Losic, Electrochim. Acta 2010, 55, 1829.
         | CrossRef | 1:CAS:528:DC%2BC3cXht1Oitb8%3D&md5=fa78da214eb13190e68d95346b6f0b62CAS | open url image1

[27]  D. Losic, S. Simovic, Expert Opin. Drug Deliv. 2009, 6, 1363.
         | CrossRef | 1:CAS:528:DC%2BD1MXhs1aqtLfL&md5=9f78cccf8322d72cc103d6f5614bb0deCAS | 19860534PubMed | open url image1

[28]  Y. Piao, H. Lim, J. Y. Chang, W. Y. Lee, H. Kim, Electrochim. Acta 2005, 50, 2997.
         | CrossRef | 1:CAS:528:DC%2BD2MXjvVCrsrk%3D&md5=35ea67bc9d5bb484101f386ddd49298eCAS | open url image1

[29]  D. Losic, J. G. Shapter, J. G. Mitchell, N. H. Voelcker, Nanotechnology 2005, 16, 2275.
         | CrossRef | 1:CAS:528:DC%2BD2MXht1CiurvL&md5=7c21f3434613bb87215fc93b4e82b4a6CAS | 20818007PubMed | open url image1

[30]  J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, Nat. Mater. 2008, 7, 442.
         | CrossRef | 1:CAS:528:DC%2BD1cXmsVejt7g%3D&md5=17561ecb158e2976ad656155658b36dcCAS | 18497851PubMed | open url image1

[31]  K. A. Willets, R. P. Van Duyne, Annu. Rev. Phys. Chem. 2007, 58, 267.
         | CrossRef | 1:CAS:528:DC%2BD2sXlslSitrg%3D&md5=b0d360508aa7d0cfda28e67cb639a20bCAS | 17067281PubMed | open url image1

[32]  P. W. Bohn, Annu. Rev. Anal. Chem. 2009, 2, 279.
         | CrossRef | 1:CAS:528:DC%2BD1MXpsFaqsbY%3D&md5=fe7ecf72fe15ac5dc6b46d3bef58a259CAS | open url image1

[33]  M. Nishizawa, V. P. Menon, C. R. Martin, Science 1995, 268, 700.
         | CrossRef | 1:CAS:528:DyaK2MXlsVGisbk%3D&md5=64827ea2377373aca274d0410b1b41abCAS | 17832383PubMed | open url image1

[34]  L. Velleman, J. G. Shapter, D. Losic, J. Membr. Sci. 2009, 328, 121.
         | CrossRef | 1:CAS:528:DC%2BD1MXhs1Cgtbo%3D&md5=010091c59cacd08a6c2c63ede25a032dCAS | open url image1

[35]  A. M. M. Jani, E. J. Anglin, S. J. P. McInnes, D. Losic, J. G. Shapter, N. H. Voelcker, Chem. Commun. 2009, 3062.
         | CrossRef | open url image1

[36]  C. R. Martin, M. Nishizawa, K. Jirage, M. S. Kang, S. B. Lee, Adv. Mater. 2001, 13, 1351.
         | CrossRef | 1:CAS:528:DC%2BD3MXntFWitL8%3D&md5=9e9e06b0e58e0d982748f4c680a1d0f5CAS | open url image1

[37]  L. Velleman, G. Triani, P. J. Evans, J. G. Shapter, D. Losic, Microporous Mesoporous Mater. 2009, 126, 87.
         | CrossRef | 1:CAS:528:DC%2BD1MXhtF2gs7jJ&md5=8f3392b955ccc8d731c4e53bab4f026fCAS | open url image1

[38]  V. S. Y. Lin, K. Motesharei, K. P. S. Dancil, M. J. Sailor, M. R. Ghadiri, Science 1997, 278, 840.
         | CrossRef | 1:CAS:528:DyaK2sXmvFOqsb4%3D&md5=ded9a433060a5951ae4ebc157a6b99f6CAS | 9346478PubMed | open url image1

[39]  A. Janshoff, K. P. S. Dancil, C. Steinem, D. P. Greiner, V. S. Y. Lin, C. Gurtner, K. Motesharei, M. J. Sailor, M. R. Ghadiri, J. Am. Chem. Soc. 1998, 120, 12108.
         | CrossRef | 1:CAS:528:DyaK1cXntVKgurg%3D&md5=5cf796f95f846c65701a398a6748aa65CAS | open url image1

[40]  K. S. Mun, S. D. Alvarez, W. Y. Choi, M. J. Sailor, ACS Nano 2010, 4, 2070.
         | CrossRef | 1:CAS:528:DC%2BC3cXktVyit7s%3D&md5=b4d4c19854f59499a40088a2f6a80d78CAS | 20356100PubMed | open url image1

[41]  S. D. Alvarez, C. P. Li, C. E. Chiang, I. K. Schuller, M. J. Sailor, ACS Nano 2009, 3, 3301.
         | CrossRef | 1:CAS:528:DC%2BD1MXhtVKksLfO&md5=2d39b5ef069c80f7654bb146bfdfb4d8CAS | 19719156PubMed | open url image1

[42]  Y. Y. Song, H. Hildebrand, P. Schmuki, Electrochem. Commun. 2009, 11, 1429.
         | CrossRef | 1:CAS:528:DC%2BD1MXotFWnt7o%3D&md5=4862e63969271229d9c2b249548df458CAS | open url image1

[43]  K. C. Popat, M. Eltgroth, T. J. LaTempa, C. A. Grimes, T. A. Desai, Biomaterials 2007, 28, 4880.
         | CrossRef | 1:CAS:528:DC%2BD2sXpsV2ktb0%3D&md5=a7cc39da80312162105c2bdf928bea7aCAS | 17697708PubMed | open url image1

[44]  K. C. Popat, M. Eltgroth, T. J. La Tempa, C. A. Grimes, T. A. Desai, Small 2007, 3, 1878.
         | CrossRef | 1:CAS:528:DC%2BD2sXhtlKqt73O&md5=2e22d9db3eb175a8fa3180153855b333CAS | 17935080PubMed | open url image1

[45]  S. Simovic, D. Losic, K. Vasilev, Chem. Commun. 2010, 46, 1317.
         | CrossRef | 1:CAS:528:DC%2BC3cXhslWgtb0%3D&md5=00c9932e729d96f816d7bdd532f36e91CAS | open url image1

[46]  K. Vasilev, Z. Poh, K. Kant, J. Chan, A. Michelmore, D. Losic, Biomaterials 2010, 31, 532.
         | CrossRef | 1:CAS:528:DC%2BD1MXhsVWnsbjJ&md5=82040f3c47c79370400a1daf9020ce4dCAS | 19819014PubMed | open url image1

[47]  K. Kant, D. Losic, Phys. Status Solidi RRL 2009, 3, 139.
         | CrossRef | 1:CAS:528:DC%2BD1MXps1eju74%3D&md5=5f951a7c2c0bdbfd687be57206cb6bd5CAS | open url image1

[48]  D. Losic, J. G. Shapter, J. J. Gooding, Aust. J. Chem. 2001, 54, 643.
         | CrossRef | 1:CAS:528:DC%2BD38XivFGmu7s%3D&md5=acb72e36d4ea3a9a2d1ca3fe24f94c3bCAS | open url image1

[49]  J. Mazurkiewicz, F. J. Mearns, D. Losic, L. Weeks, E. R. Waclawik, C. T. Rogers, J. G. Shapter, J. J. Gooding, J. Vac. Sci. Technol. B 2002, 20, 2265.
         | CrossRef | 1:CAS:528:DC%2BD38XpsFOjsb4%3D&md5=b2348ce6d302f603626cc6c27d64fb39CAS | open url image1



Rent Article (via Deepdyve) Export Citation Cited By (34)