Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Progress Toward Robust Polymer Hydrogels

Sina Naficy A , Hugh R. Brown A B , Joselito M. Razal A , Geoffrey M. Spinks A B C and Philip G. Whitten A C
+ Author Affiliations
- Author Affiliations

A Intelligent Polymer Research Institute and ARC Centre of Excellence in Electromaterials Science, University of Wollongong, Innovation Campus, Squires Way, Fairy Meadow, NSW, 2519, Australia.

B School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.

C Corresponding authors. Email: gspinks@uow.edu.au; whitten@uow.edu.au

Australian Journal of Chemistry 64(8) 1007-1025 https://doi.org/10.1071/CH11156
Submitted: 20 April 2011  Accepted: 18 July 2011   Published: 19 August 2011

Abstract

In this review we highlight new developments in tough hydrogel materials in terms of their enhanced mechanical performance and their corresponding toughening mechanisms. These mechanically robust hydrogels have been developed over the past 10 years with many now showing mechanical properties comparable with those of natural tissues. By first reviewing the brittleness of conventional synthetic hydrogels, we introduce each new class of tough hydrogel: homogeneous gels, slip-link gels, double-network gels, nanocomposite gels and gels formed using poly-functional crosslinkers. In each case we provide a description of the fracture process that may be occurring. With the exception of double network gels where the enhanced toughness is quite well understood, these descriptions remain to be confirmed. We also introduce material property charts for conventional and tough synthetic hydrogels to illustrate the wide range of mechanical and swelling properties exhibited by these materials and to highlight links between these properties and the network topology. Finally, we provide some suggestions for further work particularly with regard to some unanswered questions and possible avenues for further enhancement of gel toughness.


References

[1]  J. Kopecek, Hydrogels: From soft contact lenses and implants to self-assembled nanomaterials J. Polym. Sci. A Polym. Chem. 2009, 47, 5929.
         | Hydrogels: From soft contact lenses and implants to self-assembled nanomaterialsCrossRef | 1:CAS:528:DC%2BD1MXht1Ohtb7I&md5=7db16f0082c57660408dc263d6905e8cCAS | open url image1

[2]  N. A. Peppas, P. Bures, W. Leobandung, H. Ichikawa, Hydrogels in pharmaceutical formulations Eur. J. Pharm. Biopharm. 2000, 50, 27.
         | Hydrogels in pharmaceutical formulationsCrossRef | 1:CAS:528:DC%2BD3cXjslyju7Y%3D&md5=3cac8831310f6dad808afafd162a9eeaCAS | open url image1

[3]  N. A. Peppas, J. Hilt, A. Khademhosseini, R. Langer, Hydrogels in biology and medicine: from molecular principles to bionanotechnology Adv. Mater. 2006, 18, 1345.
         | Hydrogels in biology and medicine: from molecular principles to bionanotechnologyCrossRef | 1:CAS:528:DC%2BD28XlvVOgtLY%3D&md5=89d5cb0d55b7e3e8f723570f2fd0de12CAS | open url image1

[4]  K. Deligkaris, T. S. Tadele, W. Olthuis, A. van den Berg, Hydrogel-based devices for biomedical applications Sens. Actuators B Chem. 2010, 147, 765.
         | Hydrogel-based devices for biomedical applicationsCrossRef | open url image1

[5]  Q.-Z. Chen, A. Bismarck, U. Hansen, S. Junaid, M. Q. Tran, S. E. Harding, N. N. Ali, A. R. Boccaccini, Characterization of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue Biomaterials 2008, 29, 47.
         | Characterization of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissueCrossRef | open url image1

[6]  Y. Osada, H. Okuzaki, H. Hori, A polymer gel with electrically driven motility Nature 1992, 355, 242.
         | A polymer gel with electrically driven motilityCrossRef | 1:CAS:528:DyaK38XosFamtQ%3D%3D&md5=d7494cc664708ccda44596eb51f9f586CAS | open url image1

[7]  Y. Osada, J. P. Gong, Soft and wet materials: polymer gels Adv. Mater. 1998, 10, 827.
         | Soft and wet materials: polymer gelsCrossRef | 1:CAS:528:DyaK1cXltlKisrs%3D&md5=b37f466a3ef6ba96d34139eeef154c4cCAS | open url image1

[8]  K. K. Westbrook, H. J. Qi, Actuator designs using environmentally responsive hydrogels J. Intell. Mater. Syst. Struct. 2008, 19, 597.
         | Actuator designs using environmentally responsive hydrogelsCrossRef | 1:CAS:528:DC%2BD1cXmvV2msrk%3D&md5=b6f4ba8f06cac6394a8928d9911e2569CAS | open url image1

[9]  M. K. Shin, G. M. Spinks, S. R. Shin, S. I. Kim, S. J. Kim, Nanocomposite hydrogel with high toughness for bioactuators Adv. Mater. 2009, 21, 1712.
         | Nanocomposite hydrogel with high toughness for bioactuatorsCrossRef | 1:CAS:528:DC%2BD1MXltFGhsr8%3D&md5=d67151e2522d21c2e69fd00642cf496eCAS | open url image1

[10]  J. M. Swann, A. J. Ryan, Chemical actuation in responsive hydrogels Polym. Int. 2009, 58, 285.
         | Chemical actuation in responsive hydrogelsCrossRef | 1:CAS:528:DC%2BD1MXivFehuro%3D&md5=db5d670ad6af117ebe8b2cb421637ae8CAS | open url image1

[11]  M. L. O’Grady, P.-l. Kuo, K. K. Parker, Optimization of electroactive hydrogel actuators ACS Appl. Mater. Interfaces 2010, 2, 343.
         | Optimization of electroactive hydrogel actuatorsCrossRef | 1:CAS:528:DC%2BD1MXhsF2gsbnE&md5=93327cca092a567f1308852de3d4e0c1CAS | open url image1

[12]  D. Zhu, C. Li, X. Zeng, H. Jiang, Tunable-focus microlens arrays on curved surfaces Appl. Phys. Lett. 2010, 96, 081111.
         | Tunable-focus microlens arrays on curved surfacesCrossRef | open url image1

[13]  G. H. Kwon, Y. Y. Choi, J. Y. Park, D. H. Woo, K. B. Lee, J. H. Kim, S.-H. Lee, Electrically-driven hydrogel actuators in microfluidic channels: fabrication, characterization, and biological application Lab Chip 2010, 10, 1604.
         | Electrically-driven hydrogel actuators in microfluidic channels: fabrication, characterization, and biological applicationCrossRef | 1:CAS:528:DC%2BC3cXmslCqsb0%3D&md5=635cda510de1bf8fcb03b87d78df6888CAS | open url image1

[14]  D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, B.-H. Jo, Functional hydrogel structures for autonomous flow control inside microfluidic channels Nature 2000, 404, 588.
         | Functional hydrogel structures for autonomous flow control inside microfluidic channelsCrossRef | 1:CAS:528:DC%2BD3cXis1Gksbg%3D&md5=c95deed7fe5a4563533751a4b4410d07CAS | open url image1

[15]  K. F. Arndt, D. Kuckling, A. Richter, Application of sensitive hydrogels in flow control Polym. Adv. Technol. 2000, 11, 496.
         | Application of sensitive hydrogels in flow controlCrossRef | 1:CAS:528:DC%2BD3cXosVKnurg%3D&md5=7b470ed532f25ddbf939409a6ca088fdCAS | open url image1

[16]  N. S. Satarkar, W. Zhang, R. E. Eitel, J. Z. Hilt, Magnetic hydrogel nanocomposites as remote controlled microfluidic valves Lab Chip 2009, 9, 1773.
         | Magnetic hydrogel nanocomposites as remote controlled microfluidic valvesCrossRef | 1:CAS:528:DC%2BD1MXms12itLw%3D&md5=984191ee05d24fd3f1ba3a6f383b4e54CAS | open url image1

[17]  K. Y. Lee, D. J. Mooney, Hydrogels for tissue engineering Chem. Rev. 2001, 101, 1869.
         | Hydrogels for tissue engineeringCrossRef | 1:CAS:528:DC%2BD3MXjvFSqu7w%3D&md5=cb99cd598d111e00090ec50a97876f32CAS | open url image1

[18]  K. T. Nguyen, J. L. West, Photopolymerizable hydrogels for tissue engineering applications Biomaterials 2002, 23, 4307.
         | Photopolymerizable hydrogels for tissue engineering applicationsCrossRef | 1:CAS:528:DC%2BD38XmtVSku7g%3D&md5=2a1b73a4efef0d47e771f4eea920f3b9CAS | open url image1

[19]  R. Landers, U. Hübner, R. Schmelzeisen, R. Mülhaupt, Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering Biomaterials 2002, 23, 4437.
         | Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineeringCrossRef | 1:CAS:528:DC%2BD38XmsVeru74%3D&md5=9f7012b9fcead8b465c3680dbff2cd13CAS | open url image1

[20]  J. L. Drury, D. J. Mooney, Hydrogels for tissue engineering: scaffold design variables and applications Biomaterials 2003, 24, 4337.
         | Hydrogels for tissue engineering: scaffold design variables and applicationsCrossRef | 1:CAS:528:DC%2BD3sXmtFansLw%3D&md5=d16b5e70f0f2106dd35b0902626c556dCAS | open url image1

[21]  M. Lutolf, G. Raeber, A. Zisch, N. Tirelli, J. Hubbell, Cell-responsive synthetic hydrogels Adv. Mater. 2003, 15, 888.
         | Cell-responsive synthetic hydrogelsCrossRef | 1:CAS:528:DC%2BD3sXkvFCmurg%3D&md5=f97aea9bab19b66408b1b825fa2d0250CAS | open url image1

[22]  K. Mayumi, K. Ito, Structure and dynamics of polyrotaxane and slide-ring materials Polymer 2010, 51, 959.
         | Structure and dynamics of polyrotaxane and slide-ring materialsCrossRef | 1:CAS:528:DC%2BC3cXhslWitbw%3D&md5=80f2e6f4f53a26bac2ec729a0b948a8dCAS | open url image1

[23]  J. P. Gong, Why Are Double Network Hydrogels so Tough? Soft Matter 2010, 6, 2583.
         | Why Are Double Network Hydrogels so Tough?CrossRef | 1:CAS:528:DC%2BC3cXntF2gur4%3D&md5=abc2ece9bf65d007f205c6e132f4eb54CAS | open url image1

[24]  K. Haraguchi, Nanocomposite hydrogels Curr. Opin. Solid State Mater. Sci. 2007, 11, 47.
         | Nanocomposite hydrogelsCrossRef | 1:CAS:528:DC%2BD1cXpsVOhsL0%3D&md5=7c84d1e8be2c32fe93384307a98b075dCAS | open url image1

[25]  L. R. G. Treloar, The Physics of Rubber Elasticity (3rd Ed.) 2005 (Clarendon Press: Oxford).

[26]  H. Furukawa, K. Horie, R. Nozaki, M. Okada, “Swelling-induced modulation of static and dynamic fluctuations in polyacrylamide gels observed by scanning microscopic light scattering Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2003, 68, 031406.
         | R. Nozaki, M. Okada, “Swelling-induced modulation of static and dynamic fluctuations in polyacrylamide gels observed by scanning microscopic light scatteringCrossRef | open url image1

[27]  K. Ghosh, D. E. Ingber, Micromechanical control of cell and tissue development: implications for tissue engineering Adv. Drug Deliv. Rev. 2007, 59, 1306.
         | Micromechanical control of cell and tissue development: implications for tissue engineeringCrossRef | 1:CAS:528:DC%2BD2sXhtlals7nF&md5=cf0f8c305b4e24c78d6822a7b4bd4a2eCAS | open url image1

[28]  N. A. Peppas, P. Bures, W. Leobandung, H. Ichikawa, Hydrogels in pharmaceutical formulations Eur. J. Pharm. Biopharm. 2000, 50, 27.
         | Hydrogels in pharmaceutical formulationsCrossRef | 1:CAS:528:DC%2BD3cXjslyju7Y%3D&md5=3cac8831310f6dad808afafd162a9eeaCAS | open url image1

[29]  A. A. Griffith, The phenomena of rupture and flow in solids Philos. Trans. R. Soc. Lond. A 1920, CCXXI, 163. open url image1

[30]  I. M. Ward, J. Sweeney, An Introduction to the Mechanical Properties of Solid Polymers (2nd Ed.) 2004 (John Wiley & Sons: Chichester).

[31]  R. S. Rivlin, A. G. Thomas, Rupture of rubber. I. Characteristic energy for tearing J. Polym. Sci., Polym. Phys. Ed. 1953, 10, 291.
         | Rupture of rubber. I. Characteristic energy for tearingCrossRef | 1:CAS:528:DyaG3sXlslSnuw%3D%3D&md5=78986e119b89122fca5af1053c8914f7CAS | open url image1

[32]  ASTM D624 “Standard test for Tear Strength of Conventional Vulcanized Rubber and Thermoplastic Elastomers” American Standard for Testing and Materials 2001.

[33]  C. M. Muscat-Fenech, A. G. Atkins, Elastoplastic trouser tear testing of sheet materials Int. J. Fract. 1994, 67, 69.
         | Elastoplastic trouser tear testing of sheet materialsCrossRef | 1:CAS:528:DyaK2cXntVKjtb0%3D&md5=dd61167220c0f89b47d0a84ab2bc73cdCAS | open url image1

[34]  J. T. Bauman, Fatigue, Stress, Strain of Rubber Components: Guide for Design Engineers, Hanser, Munich, 2008.

[35]  G. J. Lake, A. G. Thomas, The strength of highly elastic materials Proc. R. Soc. Lond. A 1967, 300, 108.
         | The strength of highly elastic materialsCrossRef | 1:CAS:528:DyaF1cXktVOmug%3D%3D&md5=496027b73b09f9280912f3b967853b97CAS | open url image1

[36]  H. R. Brown, A model of the fracture of double network gels Macromolecules 2007, 40, 3815.
         | A model of the fracture of double network gelsCrossRef | 1:CAS:528:DC%2BD2sXktFCqtr8%3D&md5=c19c5988ce54e1430119046dbae928d8CAS | open url image1

[37]  J. Zarzycki, Critical stress intensity factors of wet gels J. Non-Cryst. Solids 1988, 100, 359.
         | Critical stress intensity factors of wet gelsCrossRef | 1:CAS:528:DyaL1cXktFantb0%3D&md5=c58114e414e3e498f4eda4e15fb24ea1CAS | open url image1

[38]  Y. Tanaka, K. Fukao, Y. Miyamoto, Fracture energy of gels Eur. Phys. J. E 2000, 3, 395.
         | Fracture energy of gelsCrossRef | 1:CAS:528:DC%2BD3MXhsVSqtbg%3D&md5=4cef668c6f1f8a26011c8d328e5907a2CAS | open url image1

[39]  Rubber Technology (3rd Ed.), (Ed. M. Morton) 1987 (Van Nostrand Reinhold Co.: New York).

[40]  J. E. Mark, B. Erman, Rubberlike Elasticity. A Molecular Primer, 1988 (Wiley-Interscience: New York).

[41]  B. Erman, J. E. Mark, Annu. Rev. Phys. Chem. 1989, 40, 351.
         | CrossRef | 1:CAS:528:DyaK3cXhs1Sitbk%3D&md5=f3d53acf4cd1a0185a1b0e5ea26fb78bCAS | open url image1

[42]  T.-P. Hsu, D. S. Ma, C. Cohen, Effects of inhomogeneities in polyacrylamide gels on thermodynamic and transport properties Polymer 1983, 24, 1273.
         | Effects of inhomogeneities in polyacrylamide gels on thermodynamic and transport propertiesCrossRef | 1:CAS:528:DyaL3sXmtFehtLs%3D&md5=d5d2c4d285bbb70a8725f829f7d181c5CAS | open url image1

[43]  Y. Cohen, O. Ramon, I. J. Kopelman, S. Mizrahi, Characterisation of inhomogeneous polyacrylamide hydrogels J. Polym. Sci., B, Polym. Phys. 1992, 30, 1055.
         | Characterisation of inhomogeneous polyacrylamide hydrogelsCrossRef | 1:CAS:528:DyaK38XkvFWhurs%3D&md5=5988f6721da541640044ec218ac0d904CAS | open url image1

[44]  H. Furukawa, K. Horie, Swelling induced modulation of static and dynamic fluctuations in polyacrylamide gels observed by scanning microscopic light scattering Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2003, 68, 031406.
         | Swelling induced modulation of static and dynamic fluctuations in polyacrylamide gels observed by scanning microscopic light scatteringCrossRef | open url image1

[45]  R. E. Webber, C. Creton, H. R. Brown, J. P. Gong, Large strain hysteresis and mullins effect of tough double-network hydrogels Macromolecules 2007, 40, 2919.
         | Large strain hysteresis and mullins effect of tough double-network hydrogelsCrossRef | 1:CAS:528:DC%2BD2sXjtF2nu78%3D&md5=87508da3fe70cc5cb7bb0d4e680bc51aCAS | open url image1

[46]  E. Nedkov, S. Tsvetkova, Effect of γ-irradiation on the crystalline structure of ultra high molecular weight poly (ethylene oxide) Radiat. Phys. Chem. 1977 1983, 22, 917. open url image1

[47]  A. Gestos, P. G. Whitten, G. M. Spinks, G. G. Wallace, Crosslinking neat ultrathin films and nanofibres of pH-responsive poly(acrylic acid) by UV radiation Soft Matter 2010, 6, 1045.
         | Crosslinking neat ultrathin films and nanofibres of pH-responsive poly(acrylic acid) by UV radiationCrossRef | 1:CAS:528:DC%2BC3cXitlSgtrY%3D&md5=a7813165f24718226cdc3e8a6b186543CAS | open url image1

[48]  X. Z. Wang, H. L. Wang, H. R. Brown, Jellyfish gel and its hybrid hydrogels with high mechanical strength Soft Matter 2011, 7, 211.
         | Jellyfish gel and its hybrid hydrogels with high mechanical strengthCrossRef | 1:CAS:528:DC%2BC3cXhsFKisrfE&md5=74bbaf473bcff8b63530cc7cc7cff407CAS | open url image1

[49]  D. A. Ossipov, J. N. Hilborn, Poly(vinyl alcohol)-based hydrogels formed by click chemistry Macromolecules 2006, 39, 1709.
         | Poly(vinyl alcohol)-based hydrogels formed by click chemistryCrossRef | 1:CAS:528:DC%2BD28XhtFOqtrs%3D&md5=37b08012c26a8d1f975d7e8399af29feCAS | open url image1

[50]  V. Crescenzi, L. Cornelio, C. Di Meo, S. Nardecchia, R. Lamanna, Novel hydrogels via click chemistry: synthesis and potential biomedical applications Biomacromolecules 2007, 8, 1844.
         | Novel hydrogels via click chemistry: synthesis and potential biomedical applicationsCrossRef | 1:CAS:528:DC%2BD2sXls1Krurs%3D&md5=84b7fd3d10fd503723d588500f34b00cCAS | open url image1

[51]  B. D. Polizzotti, B. D. Fairbanks, K. S. Anseth, Three-dimensional biochemical patterning of click-based composite hydrogels via thiolene photopolymerization Biomacromolecules 2008, 9, 1084.
         | Three-dimensional biochemical patterning of click-based composite hydrogels via thiolene photopolymerizationCrossRef | 1:CAS:528:DC%2BD1cXjsVGntbs%3D&md5=0d669f3f107eb6a1a5e4f06386e25580CAS | open url image1

[52]  M. van Dijk, C. F. van Nostrum, W. E. Hennink, D. T. S. Rijkers, R. M. J. Liskamp, Synthesis and characterization of enzymatically biodegradable PEG and peptide-based hydrogels prepared by click chemistry Biomacromolecules 2010, 11, 1608.
         | Synthesis and characterization of enzymatically biodegradable PEG and peptide-based hydrogels prepared by click chemistryCrossRef | 1:CAS:528:DC%2BC3cXmsVShtrw%3D&md5=6d26d99472af46709679d0b8f7ec5cafCAS | open url image1

[53]  L. Q. Xu, F. Yao, G. D. Fu, E. T. Kang, Interpenetrating network hydrogels via simultaneous click chemistry and atom transfer radical polymerization Biomacromolecules 2010, 11, 1810.
         | Interpenetrating network hydrogels via simultaneous click chemistry and atom transfer radical polymerizationCrossRef | 1:CAS:528:DC%2BC3cXmvVSmurk%3D&md5=bb835408852e36cd8683dfc49aa7df85CAS | open url image1

[54]  X.-D. Xu, C.-S. Chen, Z.-C. Wang, G.-R. Wang, S.-X. Cheng, X.-Z. Zhang, R.-X. Zhuo, Click chemistry for in situ formation of thermoresponsive P(NIPAAm-co-HEMA)-based hydrogels J. Polym. Sci. A Polym. Chem. 2008, 46, 5263.
         | Click chemistry for in situ formation of thermoresponsive P(NIPAAm-co-HEMA)-based hydrogelsCrossRef | 1:CAS:528:DC%2BD1cXpt12ltLk%3D&md5=46a4fbc86934bed3787e73a59de48e19CAS | open url image1

[55]  H.-L. Wei, Z. Yang, Y. Chen, H.-J. Chu, J. Zhu, Z.-C. Li, Characterisation of N-vinyl-2-pyrrolidone-based hydrogels prepared by a Diels-Alder click reaction in water Eur. Polym. J. 2010, 46, 1032.
         | Characterisation of N-vinyl-2-pyrrolidone-based hydrogels prepared by a Diels-Alder click reaction in waterCrossRef | 1:CAS:528:DC%2BC3cXkvFert7s%3D&md5=181b3e13232e6ef774cad9d478d75850CAS | open url image1

[56]  M. Malkoch, R. Vestberg, N. Gupta, L. Mespouille, P. Dubois, A. F. Mason, J. L. Hedrick, Q. Liao, C. W. Frank, K. Kingsbury, C. J. Hawker, Synthesis of well-defined hydrogel networks using click chemistry Chem. Commun. 2006, 2774.
         | Synthesis of well-defined hydrogel networks using click chemistryCrossRef | 1:CAS:528:DC%2BD28Xmtl2rt70%3D&md5=be90ad82f20784213b7cb094a590ceb7CAS | open url image1

[57]  T. Sakai, T. Matsunaga, Y. Yamamoto, C. Ito, R. Yoshida, S. Suzuki, N. Sasaki, M. Shibayama, U.-i. Chung, Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers Macromolecules 2008, 41, 5379.
         | Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomersCrossRef | 1:CAS:528:DC%2BD1cXns1Squrk%3D&md5=8f42b8c8d0831c39803964334c12241eCAS | open url image1

[58]  T. Matsunaga, T. Sakai, Y. Akagi, U.-i. Chung, M. Shibayama, Structure characterization of tetra-PEG gel by small-angle neutron scattering Macromolecules 2009, 42, 1344.
         | Structure characterization of tetra-PEG gel by small-angle neutron scatteringCrossRef | 1:CAS:528:DC%2BD1MXhtlensLo%3D&md5=857a436564a336108d17b8cc51633384CAS | open url image1

[59]  Y. Akagi, T. Matsunaga, M. Shibayama, U.-i. Chung, T. Sakai, Evaluation of topological defects in tetra-PEG gels Macromolecules 2010, 43, 488.
         | Evaluation of topological defects in tetra-PEG gelsCrossRef | 1:CAS:528:DC%2BD1MXhsFekt77K&md5=6c7ff1c85b3de614247327182d1eaf26CAS | open url image1

[60]  T. Matsunaga, T. Sakai, Y. Akagi, U.-i. Chung, M. Shibayama, SANS and SLS studies on tetra-arm PEG gels in as-prepared and swollen states Macromolecules 2009, 42, 6245.
         | SANS and SLS studies on tetra-arm PEG gels in as-prepared and swollen statesCrossRef | 1:CAS:528:DC%2BD1MXoslWlsr4%3D&md5=bc5f3eec3b2ebb049797d2b01f5dd0caCAS | open url image1

[61]  Y. Okumura, K. Ito, The polyrotaxane gel: a topological gel by figure-of-eight cross-links Adv. Mater. 2001, 13, 485.
         | The polyrotaxane gel: a topological gel by figure-of-eight cross-linksCrossRef | 1:CAS:528:DC%2BD3MXjtVWktb4%3D&md5=88761b55ef4c22b25a02a619c4d21920CAS | open url image1

[62]  T. Karino, Y. Okumura, C. Zhao, T. Kataoka, K. Ito, M. Shibayama, SANS studies on deformation mechanism of slide-ring gel Macromolecules 2005, 38, 6161.
         | SANS studies on deformation mechanism of slide-ring gelCrossRef | 1:CAS:528:DC%2BD2MXlt1Sitbk%3D&md5=7e6d3e3bf9d62435f945c26c913856eeCAS | open url image1

[63]  T. Koga, F. Tanaka, Elastic properties of polymer networks with sliding junctions Eur. Phys. J. E 2005, 17, 225.
         | Elastic properties of polymer networks with sliding junctionsCrossRef | 1:CAS:528:DC%2BD2MXosVegsbg%3D&md5=a8de5322d40e3308958dea824734af00CAS | open url image1

[64]  J. P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Double-network hydrogels with extremely high mechanical strength Adv. Mater. 2003, 15, 1155.
         | Double-network hydrogels with extremely high mechanical strengthCrossRef | 1:CAS:528:DC%2BD3sXmtFemu7k%3D&md5=1f1d1343a7e496bf7990495eafc1e791CAS | open url image1

[65]  Y. Kawauchi, Y. Tanaka, H. Furukawa, T. Kurokawa, T. Nakajima, Y. Osada, J. P. Gong, Brittle, ductile, paste-like behaviors and distinct necking of double network gels with enhanced heterogeneity Journal of Physics: Conference Series 2009, 184, 012016.
         | Brittle, ductile, paste-like behaviors and distinct necking of double network gels with enhanced heterogeneityCrossRef | open url image1

[66]  Y.-H. Na, Y. Tanaka, Y. Kawauchi, H. Furukawa, T. Sumiyoshi, J. P. Gong, Y. Osada, Necking phenomenon of double-network gels Macromolecules 2006, 39, 4641.
         | Necking phenomenon of double-network gelsCrossRef | 1:CAS:528:DC%2BD28XlslOks7c%3D&md5=71dd8af7ca072af42614cb299955eb3aCAS | open url image1

[67]  T. Nakajima, H. Furukawa, J. P. Gong, E. K. Lin, W.-l. Wu, A deformation mechanism for double-network hydrogels with enhanced toughness Macromol. Symp. 2010, 291, 122.
         | A deformation mechanism for double-network hydrogels with enhanced toughnessCrossRef | open url image1

[68]  T. Nakajima, H. Furukawa, Y. Tanaka, T. Kurokawa, Y. Osada, J. P. Gong, True chemical structure of double network hydrogels Macromolecules 2009, 42, 2184.
         | True chemical structure of double network hydrogelsCrossRef | 1:CAS:528:DC%2BD1MXitVOmsb0%3D&md5=c09cce5390e56b67065ca7d743701b97CAS | open url image1

[69]  K. Okumura, Toughness of double elastic networks Europhys. Lett. 2004, 67, 470.
         | Toughness of double elastic networksCrossRef | 1:CAS:528:DC%2BD2cXnsFWmtbc%3D&md5=470148fedecbe508c6f7431872917d0aCAS | open url image1

[70]  Y. Tanaka, A local damage model for anomalous high toughness of double-network gels Europhys. Lett. 2007, 78, 56005.
         | A local damage model for anomalous high toughness of double-network gelsCrossRef | open url image1

[71]  Q. M. Yu, Y. Tanaka, H. Furukawa, T. Kurokawa, J. P. Gong, Direct observation of damage zone around crack tips in double-network gels Macromolecules 2009, 42, 3852.
         | Direct observation of damage zone around crack tips in double-network gelsCrossRef | 1:CAS:528:DC%2BD1MXmsFGlsL4%3D&md5=9960fb1670080b0e0bf2d3423b22ef24CAS | open url image1

[72]  Y. Tanaka, R. Kuwabara, Y.-H. Na, T. Kurokawa, J. P. Gong, Y. Osada, Determination of fracture energy of high strength double network hydrogels J. Phys. Chem. B 2005, 109, 11559.
         | Determination of fracture energy of high strength double network hydrogelsCrossRef | 1:CAS:528:DC%2BD2MXkt1aisL0%3D&md5=2eb89a0a97c3409700c2e2337079976fCAS | open url image1

[73]  M. A. Llorente, A. L. Andrady, J. E. Mark, Model networks of end-linked polydimethylsiloxane chains. XI. Use of very short network chains to improve ultimate properties J. Polym. Sci., B, Polym. Phys. 1981, 19, 621.
         | Model networks of end-linked polydimethylsiloxane chains. XI. Use of very short network chains to improve ultimate propertiesCrossRef | 1:CAS:528:DyaL3MXhslKnsLs%3D&md5=b8e781d8da3996b8a6082cd80a7c019cCAS | open url image1

[74]  M.-Y. Tang, A. Letton, J. E. Mark, Colloid Polym. Sci. 1984, 262, 990.
         | CrossRef | 1:CAS:528:DyaL2MXks1Ohsw%3D%3D&md5=897ee831ff30a07a2d86eb62b49412b3CAS | open url image1

[75]  K. Haraguchi, Synthesis and properties of soft nanocomposite materials with novel organic / inorganic network structures Polym. J. 2011, 43, 223.
         | Synthesis and properties of soft nanocomposite materials with novel organic / inorganic network structuresCrossRef | 1:CAS:528:DC%2BC3MXivVClsrY%3D&md5=017ea9bfd6a4d1f52f1e6792ba6e64baCAS | open url image1

[76]  K. Haraguchi, Y. Xu, G. Li, Molecular characteristics of poly(N-isopropylacrylamide) separated from nanocomposite gels by removal of clay from the polymer/clay network Macromol. Rapid Commun. 2010, 31, 718.
         | Molecular characteristics of poly(N-isopropylacrylamide) separated from nanocomposite gels by removal of clay from the polymer/clay networkCrossRef | 1:CAS:528:DC%2BC3cXltVyrs74%3D&md5=5bcd01ce4618711be3feca095a5c3f52CAS | open url image1

[77]  K. Haraguchi, H. J. Li, K. Matsuda, T. Takehisa, E. Elliott, Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA–clay nanocomposite hydrogels Macromolecules 2005, 38, 3482.
         | Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA–clay nanocomposite hydrogelsCrossRef | 1:CAS:528:DC%2BD2MXisFOnu7k%3D&md5=52c1dd690949427ab5f14d4a8ee7c6a0CAS | open url image1

[78]  K. Haraguchi, T. Takehisa, Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties Adv. Mater. 2002, 14, 1120.
         | Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling propertiesCrossRef | 1:CAS:528:DC%2BD38XmsFyrurw%3D&md5=f201cf2f09cf142c288126dc62e8c52cCAS | open url image1

[79]  K. Haraguchi, T. Takehisa, S. Fan, Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clay Macromolecules 2002, 35, 10162.
         | Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clayCrossRef | 1:CAS:528:DC%2BD38XptFOksrY%3D&md5=2e1500e2d29f587ee5b1d1ea17685b6fCAS | open url image1

[80]  K. Haraguchi, H.-J. Li, Mechanical properties and structure of polymer–clay nanocomposite gels with high clay content Macromolecules 2006, 39, 1898.
         | Mechanical properties and structure of polymer–clay nanocomposite gels with high clay contentCrossRef | 1:CAS:528:DC%2BD28XpvFClsQ%3D%3D&md5=1340dcd8a7c5b8d4e6b72e1ec5256953CAS | open url image1

[81]  K. Haraguchi, H.-J. Li, Mechanical properties of nanocomposite hydrogels consisting of organic/inorganic networks and the effects of clay modification thereto J. Network Polym. Jpn. 2004, 25, 2.
         | 1:CAS:528:DC%2BD2cXivVait7g%3D&md5=4e5924f2817b769e21fc34867ca9027cCAS | open url image1

[82]  W.-L. Lin, W. Fan, A. Marcellan, D. Hourdet, C. Creton, Large strain and fracture properties of poly(dimethylacrylamide) / silica hybrid hydrogels Macromolecules 2010, 43, 2554.
         | Large strain and fracture properties of poly(dimethylacrylamide) / silica hybrid hydrogelsCrossRef | 1:CAS:528:DC%2BC3cXhsFams70%3D&md5=0cd1484027c6ca867b6d1eeac82aae7eCAS | open url image1

[83]  S. Abdurrahmanoglu, O. Okay, Rheological behaviour of polymer-clay nanocomposite hydrogels: Effect of nanoscale interactions J. Appl. Polym. Sci. 2010, 116, 2328.
         | Rheological behaviour of polymer-clay nanocomposite hydrogels: Effect of nanoscale interactionsCrossRef | 1:CAS:528:DC%2BC3cXitl2itrs%3D&md5=65528f1186c00da549670b981b7dd936CAS | open url image1

[84]  M. Zhu, Y. Liu, B. Sun, W. Zhang, X. Liu, H. Yu, Y. Zhang, D. Kuckling, H.-J. P. Adler, A novel highly resilient nanocomposite hydrogel with low hysteresis and ultrahigh elongation Macromol. Rapid Commun. 2006, 27, 1023.
         | A novel highly resilient nanocomposite hydrogel with low hysteresis and ultrahigh elongationCrossRef | 1:CAS:528:DC%2BD28XnslCguro%3D&md5=63f410a900badbd0db3ca4b9d7d93074CAS | open url image1

[85]  Y. Liu, M. Zhu, X. Liu, Y. M. Jiang, Y. Ma, Z. Y. Qin, D. Kuckling, H.-J. P. Adler, Mechanical properties and phase transition of high clay content clay/poly(N-isopropylacrylamide) nanocomposite hydrogel Macromol. Symp. 2007, 254, 353.
         | Mechanical properties and phase transition of high clay content clay/poly(N-isopropylacrylamide) nanocomposite hydrogelCrossRef | 1:CAS:528:DC%2BD2sXhtValurbO&md5=a8e8888f05043afc7bd50fa2002f057aCAS | open url image1

[86]  X. Hu, L. Xiong, T. Wang, Z. Lin, X. Liu, Z. Tong, Synthesis and dual response of ionic nanocomposite hydrogels with ultrahigh tensibility and transparence Polymer 2009, 50, 1933.
         | Synthesis and dual response of ionic nanocomposite hydrogels with ultrahigh tensibility and transparenceCrossRef | 1:CAS:528:DC%2BD1MXjsl2itrs%3D&md5=5980c52c84577ab5de591dde009c8133CAS | open url image1

[87]  T. Nishida, H. Endo, N. Osaka, H.-J. Li, K. Haraguchi, M. Shibayama, Deformation mechanism of nanocomposite gels studied by contrast variation small-angle neutron scattering Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2009, 80, 030801 (R).(R)
         | Deformation mechanism of nanocomposite gels studied by contrast variation small-angle neutron scatteringCrossRef | open url image1

[88]  T. Huang, H. Xu, K. Jiao, L. Zhu, H. Brown, H. Wang, A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel Adv. Mater. 2007, 19, 1622.
         | A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogelCrossRef | 1:CAS:528:DC%2BD2sXnsVagsbw%3D&md5=6fe8a40e04fcdf4af383988e8922c446CAS | open url image1

[89]  X. Qin, F. Zhao, Y. Liu, H. Wang, S. Feng, High mechanical strength hydrogels preparation using hydrophilic reactive microgels as crosslinking agents Colloid Polym. Sci. 2009, 287, 621.
         | High mechanical strength hydrogels preparation using hydrophilic reactive microgels as crosslinking agentsCrossRef | 1:CAS:528:DC%2BD1MXisFOlsrk%3D&md5=a570fd120e0fc49346256d054c5311c9CAS | open url image1

[90]  Y. Wu, Z. Zhou, Q. Fan, L. Chen, M. Zhu, Facile in-situ fabrication of novel organic nanoparticle hydrogels with excellent mechanical properties J. Mater. Chem. 2009, 19, 7340.
         | Facile in-situ fabrication of novel organic nanoparticle hydrogels with excellent mechanical propertiesCrossRef | 1:CAS:528:DC%2BD1MXht1SqsLzF&md5=c7e4c2947509b259914303056976aba7CAS | open url image1

[91]  K. Xu, Y. Tan, Q. Chen, H. An, W. Li, L. Dong, P. Wang, A novel multi-responsive polyampholyte composite hydrogel with excellent mechanical strength and rapid shrinking rate J. Colloid Interface Sci. 2010, 345, 360.
         | A novel multi-responsive polyampholyte composite hydrogel with excellent mechanical strength and rapid shrinking rateCrossRef | 1:CAS:528:DC%2BC3cXkt1Orsrg%3D&md5=0658866af49635745091b155b9745ee8CAS | open url image1

[92]  L.-W. Xia, X.-J. Ju, J.-J. Liu, R. Xie, L.-Y. Chu, Responsive hydrogels with poly(N-isopropylacrylamide-co-acrylic acid) colloidal spheres as building blocks J. Colloid Interface Sci. 2010, 349, 106.
         | Responsive hydrogels with poly(N-isopropylacrylamide-co-acrylic acid) colloidal spheres as building blocksCrossRef | 1:CAS:528:DC%2BC3cXotlWls7w%3D&md5=690206826c3c9b72c591932bf155a6d0CAS | open url image1

[93]  G. Dubois, W. Volksen, T. Magbitang, R. Miller, D. Gage, R. Dauskardt, Molecular network reinforcement of sol–gel glasses Adv. Mater. 2007, 19, 3989.
         | Molecular network reinforcement of sol–gel glassesCrossRef | 1:CAS:528:DC%2BD2sXhsVaht77J&md5=d272614099bb325763f74407ac86c9c1CAS | open url image1

[94]  R. J. Crawford, Plastics Engineering, (3rd Ed.) 2004, (Elsevier: Oxford).

[95]  K. Friedrich, U. A. Karsch, Failure processes in particulate filled polypropylene Fibre Science and Technology 1983, 18, 37.
         | Failure processes in particulate filled polypropyleneCrossRef | 1:CAS:528:DyaL3sXlsV2ltw%3D%3D&md5=26e9476749da374105e60ca03b6902a4CAS | open url image1

[96]  A. C. Meeks, Fracture and mechanical properties of epoxy resins and rubber-modified epoxy resins Polymer 1974, 15, 675.
         | Fracture and mechanical properties of epoxy resins and rubber-modified epoxy resinsCrossRef | 1:CAS:528:DyaE2MXpvFSnsA%3D%3D&md5=79ab0867f6cc9add10dd32d8d7f76c64CAS | open url image1

[97]  R. J. M. Borggreve, R. J. Gaymans, J. Schuijer, J. F. I. Housz, Brittle-tough transition in nylon-rubber blends: effect of rubber concentration and particle size Polymer 1987, 28, 1489.
         | Brittle-tough transition in nylon-rubber blends: effect of rubber concentration and particle sizeCrossRef | 1:CAS:528:DyaL2sXlsFGhurw%3D&md5=b559ab4501eba1b63fb04534f2c0e9e8CAS | open url image1

[98]  D. S. Parker, H. J. Sue, J. Huang, A. F. Yee, Toughening mechanisms in core-shell rubber modified polycarbonate Polymer 1990, 31, 2267.
         | Toughening mechanisms in core-shell rubber modified polycarbonateCrossRef | 1:CAS:528:DyaK3MXksVSquw%3D%3D&md5=d335767ff3cf4bb361ca45cb3a1b55d1CAS | open url image1

[99]  M. Ashby, H. Shercliff, D. Cebon, Materials Engineering, Science, Processing and Design (2nd Ed.), 2010 (Elsevier: Oxford).

[100]  T. Baumberger, O. Ronsin, Cooperative effect of stress and ion displacement on the dynamics of cross-link unzipping and rupture of alginate gels Biomacromolecules 2010, 11, 1571.
         | Cooperative effect of stress and ion displacement on the dynamics of cross-link unzipping and rupture of alginate gelsCrossRef | 1:CAS:528:DC%2BC3cXmsVCqsL0%3D&md5=e4860f4260ee7c9705f833558ee0a328CAS | open url image1

[101]  T. Baumberger, C. Caroli, D. Martina, Fracture of a biopolymer gel as a viscoplastic disentanglement process Eur. Phys. J. E 2006, 21, 81.
         | Fracture of a biopolymer gel as a viscoplastic disentanglement processCrossRef | 1:CAS:528:DC%2BD2sXisV2iug%3D%3D&md5=c73e5137bdf4a29f778a6525ac8b9073CAS | open url image1

[102]  J. Zhang, C. R. Daubert, E. A. Foegeding, Characterization of polyacrylamide gels as an elastic model for food gels Rheologica Acta 2005, 44, 622.
         | Characterization of polyacrylamide gels as an elastic model for food gelsCrossRef | 1:CAS:528:DC%2BD2MXmtlOgu7o%3D&md5=81220f82d6fd01712ae4b9960f7b8d65CAS | open url image1

[103]  M. Huang, H. Furukawa, Y. Tanaka, T. Nakajima, Y. Osada, J. P. Gong, Importance of entanglement between first and second components in high-strength double network gels Macromolecules 2007, 40, 6658.
         | Importance of entanglement between first and second components in high-strength double network gelsCrossRef | 1:CAS:528:DC%2BD2sXosVCksbY%3D&md5=06ff5559cc7c05227b697a2b1688698fCAS | open url image1

[104]  H. Tsukeshiba, M. Huang, Y.-H. Na, T. Kurokawa, R. Kuwabara, Y. Tanaka, H. Furukawa, Y. Osada, J. P. Gong, Effect of polymer entanglement on the toughening of double network hydrogels J. Phys. Chem. B 2005, 109, 16304.
         | Effect of polymer entanglement on the toughening of double network hydrogelsCrossRef | 1:CAS:528:DC%2BD2MXntVyhtLk%3D&md5=d4dfd28a3cc8e37c6a932bf83970d456CAS | open url image1

[105]  D. Myung, W. Koh, J. Ko, Y. Hu, M. Carrasco, J. Noolandi, C. N. Ta, C. W. Frank, Biomimetic strain hardening in interpenetrating polymer network hydrogels Polymer 2007, 48, 5376.
         | Biomimetic strain hardening in interpenetrating polymer network hydrogelsCrossRef | 1:CAS:528:DC%2BD2sXptlyqurY%3D&md5=1e26db96f97716dafbdf5def71f7baf6CAS | open url image1

[106]  A. Nakayama, A. Kakugo, J. P. Gong, Y. Osada, M. Takai, T. Erata, S. Kawano, High mechanical strength double-network hydrogel with bacterial cellulose Adv. Funct. Mater. 2004, 14, 1124.
         | High mechanical strength double-network hydrogel with bacterial celluloseCrossRef | 1:CAS:528:DC%2BD2cXhtVyiu77L&md5=a0f25d9be3d98ccef97aec1ed1b052e6CAS | open url image1

[107]  I. Tranoudis, N. Efron, Tensile properties of soft contact lens materials Cont. Lens Anterior Eye 2004, 27, 177.
         | Tensile properties of soft contact lens materialsCrossRef | open url image1

[108]  B. D. Johnson, D. J. Beebe, W. C. Crone, Effects of swelling on the mechanical properties of a pH-sensitive hydrogel for use in microfluidic devices Mater. Sci. Eng. C 2004, 24, 575.
         | Effects of swelling on the mechanical properties of a pH-sensitive hydrogel for use in microfluidic devicesCrossRef | open url image1

[109]  X. Zhang, X. Guo, S. Yang, S. Tan, X. Li, H. Dai, X. Yu, X. Zhang, N. Weng, B. Jian, J. Xu, Double-network hydrogel with high mechanical strength prepared from two biocompatible polymers J. Appl. Polym. Sci. 2009, 112, 3063.
         | Double-network hydrogel with high mechanical strength prepared from two biocompatible polymersCrossRef | 1:CAS:528:DC%2BD1MXks1Wgt7k%3D&md5=86942cbebfee5b9f501c3770167357adCAS | open url image1

[110]  Y. Lee, D. N. Kim, D. Choi, W. Lee, J. Park, W.-G. Koh, Preparation of interpenetrating polymer network composed of poly(ethylene glycol) and poly(acrylamide) hydrogels as a support of enzyme immobilization Polym. Adv. Technol. 2008, 19, 852.
         | Preparation of interpenetrating polymer network composed of poly(ethylene glycol) and poly(acrylamide) hydrogels as a support of enzyme immobilizationCrossRef | 1:CAS:528:DC%2BD1cXpsVWrt7s%3D&md5=46da7c3c34d1290b737d0888c07f8563CAS | open url image1

[111]  Y. Liu, M. Zhu, X. Liu, W. Zhang, B. Sun, Y. Chen, H.-J. P. Adler, High clay content nanocomposite hydrogels with surprising mechanical strength and interesting deswelling kinetics Polymer 2006, 47, 1.
         | High clay content nanocomposite hydrogels with surprising mechanical strength and interesting deswelling kineticsCrossRef | 1:CAS:528:DC%2BD2MXhtlCntr3F&md5=c60a3d14bfe649c1a3e838d0ff23ab89CAS | open url image1

[112]  K. Haraguchi, R. Farnworth, A. Ohbayashi, T. Takehisa, Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N,N-dimethylacrylamide) and clay Macromolecules 2003, 36, 5732.
         | Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N,N-dimethylacrylamide) and clayCrossRef | 1:CAS:528:DC%2BD3sXkvFOlsLs%3D&md5=53cf1a396709a5deba10493f17b6ef5fCAS | open url image1

[113]  L. Xiong, M. Zhu, X. Hu, X. Liu, Z. Tong, Ultrahigh deformability and transparency of Hectorite clay nanocomposite hydrogels with nimble pH response Macromolecules 2009, 42, 3811.
         | Ultrahigh deformability and transparency of Hectorite clay nanocomposite hydrogels with nimble pH responseCrossRef | 1:CAS:528:DC%2BD1MXktF2gsbY%3D&md5=69355a06afeda2f37e33f04e24ab9787CAS | open url image1

[114]  M. Zhu, L. Xiong, T. Wang, X. Liu, C. Wang, Z. Tong, High tensibility and pH-responsive swelling of nanocomposite hydrogels containing the positively chargeable 2-(dimethylamino)ethyl methacrylate monomer React. Funct. Polym. 2010, 70, 267.
         | High tensibility and pH-responsive swelling of nanocomposite hydrogels containing the positively chargeable 2-(dimethylamino)ethyl methacrylate monomerCrossRef | 1:CAS:528:DC%2BC3cXjvFKhtL8%3D&md5=fc1e09321b3f4825bb492ddf6c21b88aCAS | open url image1

[115]  J. Ma, L. Zhang, B. Fan, Y. Xu, B. Liang, A novel sodium carboxymethylcellulose/poly(N-isopropylacrylamide)/Clay semi-IPN nanocomposite hydrogel with improved response rate and mechanical properties J. Polym. Sci., B, Polym. Phys. 2008, 46, 1546.
         | A novel sodium carboxymethylcellulose/poly(N-isopropylacrylamide)/Clay semi-IPN nanocomposite hydrogel with improved response rate and mechanical propertiesCrossRef | 1:CAS:528:DC%2BD1cXpt12lsrw%3D&md5=d2c255b9bcc8a4768ac27a43104da9dfCAS | open url image1

[116]  X. Hu, T. Wang, L. Xiong, C. Wang, X. Liu, Z. Tong, Preferential adsorption of poly(ethylene glycol) on Hectorite clay and effects on poly(N-isopropylacrylamide)/Hectorite nanocomposite hydrogels Langmuir 2010, 26, 4233.
         | Preferential adsorption of poly(ethylene glycol) on Hectorite clay and effects on poly(N-isopropylacrylamide)/Hectorite nanocomposite hydrogelsCrossRef | 1:CAS:528:DC%2BD1MXhsFaks7rN&md5=013f782aa62fae7fcdc6fb4990422b04CAS | open url image1

[117]  L. Song, M. Zhu, Y. Chen, K. Haraguchi, Temperature- and pH-sensitive nanocomposite gels with semi-interpenetrating organic/inorganic networks Macromol. Chem. Phys. 2008, 209, 1564.
         | Temperature- and pH-sensitive nanocomposite gels with semi-interpenetrating organic/inorganic networksCrossRef | 1:CAS:528:DC%2BD1cXhtVehu7rI&md5=68efc39f1f4d62da30e3a1179e33b936CAS | open url image1

[118]  M. Fukasawa, T. Sakai, U.-i. Chung, K. Haraguchi, Synthesis and mechanical properties of a nanocomposite gel consisting of a tetra-PEG/clay network Macromolecules 2010, 43, 4370.
         | Synthesis and mechanical properties of a nanocomposite gel consisting of a tetra-PEG/clay networkCrossRef | 1:CAS:528:DC%2BC3cXkslKgsL8%3D&md5=b33f92d21eae3f7b640c3b39c3f5613bCAS | open url image1

[119]  L. Xiong, X. Hu, X. Liu, Z. Tong, Network chain density and relaxation of in situ synthesized polyacrylamide/Hectorite clay nanocomposite hydrogels with ultrahigh tensibility Polymer 2008, 49, 5064.
         | Network chain density and relaxation of in situ synthesized polyacrylamide/Hectorite clay nanocomposite hydrogels with ultrahigh tensibilityCrossRef | 1:CAS:528:DC%2BD1cXht12rt7rE&md5=69a7d4132f783ca02cbe839799477c5dCAS | open url image1

[120]  J. Djonlagić, Z. S. Petrović, Semi-interpenetrating polymer networks composed of poly(N-isopropyl acrylamide) and polyacrylamide hydrogels J. Polym. Sci., B, Polym. Phys. 2004, 42, 3987.
         | Semi-interpenetrating polymer networks composed of poly(N-isopropyl acrylamide) and polyacrylamide hydrogelsCrossRef | open url image1

[121]  D. Myung, D. Waters, M. Wiseman, P. E. Duhamel, J. Noolandi, C. N. Ta, C. W. Frank, Progress in the development of interpenetrating polymer network hydrogels Polym. Adv. Technol. 2008, 19, 647.
         | Progress in the development of interpenetrating polymer network hydrogelsCrossRef | 1:CAS:528:DC%2BD1cXotFyrsrk%3D&md5=081bbe7c0550fccf5c7ece0239431dc9CAS | open url image1

[122]  P. D. Topham, J. R. Howse, C. J. Crook, S. P. Armes, R. A. L. Jones, A. J. Ryan, Antagonistic triblock polymer gels powered by pH oscillations Macromolecules 2007, 40, 4393.
         | Antagonistic triblock polymer gels powered by pH oscillationsCrossRef | 1:CAS:528:DC%2BD2sXlvFSns7w%3D&md5=23fcbb34eafc930f108a1712e932eec5CAS | open url image1

[123]  G. Miquelard-Garnier, D. Hourdet, C. Creton, Large strain behavior of nanostructured polyelectrolyte hydrogels Polymer 2009, 50, 481.
         | Large strain behavior of nanostructured polyelectrolyte hydrogelsCrossRef | 1:CAS:528:DC%2BD1MXksFOjuw%3D%3D&md5=dd548888916292795211a1925053db7cCAS | open url image1



Rent Article (via Deepdyve) Export Citation Cited By (121)