Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Conjugated Oligomers and Polymers Based on Anthracene, Tetracene, Pentacene, Naphthodithiophene, and Anthradithiophene Building Blocks

Dan Lehnherr A and Rik R. Tykwinski B C

A Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.

B Institut für Organische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.

C Corresponding author. Email: rik.tykwinski@chemie.uni-erlangen.de

Australian Journal of Chemistry 64(7) 919-929 http://dx.doi.org/10.1071/CH11169
Submitted: 28 April 2011  Accepted: 24 May 2011   Published: 19 July 2011

Abstract

Acene derivatives provide unique materials for organic semiconductor applications. Recent synthetic achievements have provided several oligomers and polymers based on acene building blocks of varied structural motifs, including anthracene, tetracene, pentacene, as well as naphtho- and anthradithiophene. This report highlights recent work in this area, particularly for the higher acenes tetracene, pentacene, and anthradithiophene. When possible, the properties of defined-length oligomers are compared and contrasted to those of mono- and polymeric systems.

Graphical Abstract Image


References

[1]  (a) J. E. Anthony, A. Facchetti, M. Heeney, S. R. Marder, X. W. Zhan, Adv. Mater. 2010, 22, 3876.
         | CrossRef | 1:CAS:528:DC%2BC3cXhtFKlu7zF&md5=1bc7e9e0203c83c480fae46d670d9873CAS | open url image1
      (b) A. Pron, P. Gawrys, M. Zagorska, D. Djurado, R. Demadrille, Chem. Soc. Rev. 2010, 39, 2577.
         | CrossRef | open url image1
      (c) Y.-J. Cheng, S.-H. Yang, C.-S. Hsu, Chem. Rev. 2009, 109, 5868.
         | CrossRef | open url image1
      (d) A. R. Murphy, J. M. J. Fréchet, Chem. Rev. 2007, 107, 1066.
         | CrossRef | open url image1
      (e) M. Bendikov, F. Wudl, D. F. Perepichka, Chem. Rev. 2004, 104, 4891.
         | CrossRef | open url image1

[2]  (a) J. E. Anthony, Angew. Chem. Int. Ed. 2008, 47, 452.
         | CrossRef | 1:CAS:528:DC%2BD1cXptlOhtA%3D%3D&md5=efc255bc0f9dbdb8f522acc855f3a811CAS | open url image1
      (b) J. E. Anthony, Chem. Rev. 2006, 106, 5028.
         | CrossRef | open url image1

[3]  (a) N. Franz, G. Kreutzer, H.-A. Klok, Synlett 2006, 1793.] (a)
         | CrossRef | 1:CAS:528:DC%2BD28XhtVWntbjF&md5=35d32463477b7ba0a53740619eeb8223CAS | open url image1
         (b) (b) Electronic Materials – The Oligomer Approach 1998 (Eds K. Müllen, G. Wegner) (Wiley-VCH: Weinheim).

[4]  D. Lehnherr, R. R. Tykwinski, Materials 2010, 3, 2772.
         | CrossRef | 1:CAS:528:DC%2BC3cXlsVyntL8%3D&md5=1484c072af7836e5b3f6befef4667b1eCAS | open url image1

[5]     (a) (a) For non-conjugated pentacene oligomers, see: D. Lehnherr, R. R. Tykwinski, Org. Lett. 2007, 9, 4583. doi:10.1021/Ol702094D
      (b) D. Lehnherr, R. McDonald, M. J. Ferguson, R. R. Tykwinski, Tetrahedron 2008, 64, 11449.For non-conjugated pentacene oligomers, see:
         | CrossRef | open url image1
      (c) D. Lehnherr, J. Gao, F. A. Hegmann, R. R. Tykwinski, J. Org. Chem. 2009, 74, 5017.
         | CrossRef | open url image1

[6]  R. E. Martin, F. Diederich, Angew. Chem. Int. Ed. 1999, 38, 1350.
         | CrossRef | open url image1

[7]  (a) K. Ito, T. Suzuki, Y. Sakamoto, D. Kubota, Y. Inoue, F. Sato, S. Tokito, Angew. Chem. Int. Ed. 2003, 42, 1159.
         | CrossRef | 1:CAS:528:DC%2BD3sXisVers7o%3D&md5=d6ed2a7870ea5907fda02a05f915c6a9CAS | open url image1
      (b) W. Cui, X. Zhang, X. Jiang, H. Tian, D. Yan, Y. Geng, X. Jing, F. Wang, Org. Lett. 2006, 8, 785.
         | CrossRef | open url image1
      (c) A. Dell'Aquila, F. Marinelli, J. Tey, P. Keg, Y.-M. Lam, O. L. Kapitanchuk, P. Mastrorilli, C. F. Nobile, P. Cosma, A. Marchenko, D. Fichou, S. G. Mhaisalkar, G. P. Suranna, L. Torsi, J. Mater. Chem. 2008, 18, 786.
         | CrossRef | open url image1
      (d) P. Keg, A. Dell'Aquila, F. Marinelli, O. L. Kapitanchuk, D. Fichou, P. Mastrorilli, G. Romanazzi, G. P. Suranna, L. Torsi, Y. M. Lam, S. G. Mhaisalkar, J. Mater. Chem. 2010, 20, 2448.
         | CrossRef | open url image1
      (e) S. Akiyama, S. Misumi, M. Nakagawa, Bull. Chem. Soc. Jpn. 1960, 33, 1293.
         | CrossRef | open url image1
      (f) W. Zhao, Q. Tang, H. S. Chan, J. Xu, K. Y. Lo, Q. Miao, Chem. Commun. 2008, 4324.
         | CrossRef | open url image1
      (g) J. A. Merlo, C. R. Newman, C. P. Gerlach, T. W. Kelley, D. V. Muyres, S. E. Fritz, M. F. Toney, C. D. Frisbie, J. Am. Chem. Soc. 2005, 127, 3997.
         | CrossRef | open url image1
      (h) S. Toyota, M. Goichi, M. Kotani, Angew. Chem. Int. Ed. 2004, 43, 2248.
         | CrossRef | open url image1
      (i) S. Toyota, Chem. Lett. 2011, 40, 12.
         | CrossRef | open url image1
      (j) Y. Morisaki, T. Sawamura, T. Murakami, Y. Chujo, Org. Lett. 2010, 12, 3188.
         | CrossRef | open url image1

[8]  (a) M. Baumgarten, U. Müller, A. Bohnen, K. Müllen, Angew. Chem. Int. Ed. Engl. 1992, 31, 448.
         | CrossRef | open url image1
      (b) U. Müller, A. Martin, K. Müllen, Chem. Ber. 1994, 127, 437.
         | CrossRef | open url image1

[9]  (a) M. Roth, M. Rehahn, M. Ahles, R. Schmechel, H. von Seggern, Mater. Res. Soc. Symp. Proc. 2005, 871E, I6.29.1. open url image1
      (b) A. M. Müller, Y. S. Avlasevich, W. W. Schoeller, K. Müllen, C. J. Bardeen, J. Am. Chem. Soc. 2007, 129, 14240.
         | CrossRef | open url image1
      (c) A. M. Müller, Y. S. Avlasevich, K. Müllen, C. J. Bardeen, Chem. Phys. Lett. 2006, 421, 518.
         | CrossRef | open url image1
      (d) T. Kimoto, K. Tanaka, Y. Sakai, A. Ohno, K. Yoza, K. Kobayashi, Org. Lett. 2009, 11, 3658.
         | CrossRef | open url image1
      (e) V. S. Barlier, C. W. Schlenker, S. W. Chin, M. E. Thompson, Chem. Commun. 2011, 47, 3754.
         | CrossRef | open url image1

[10]  S. A. Odom, S. R. Parkin, J. E. Anthony, Org. Lett. 2003, 5, 4245.
         | CrossRef | 1:CAS:528:DC%2BD3sXotVWqtbc%3D&md5=d41e746a62392cabe35bc4da16cba81dCAS | open url image1

[11]  X. Zhang, X. Jiang, J. Luo, C. Chi, H. Chen, J. Wu, Chem. Eur. J. 2010, 16, 464.
         | CrossRef | 1:CAS:528:DC%2BC3cXjvFSh&md5=403ad6cddfb3b48544cb4c275aee02cdCAS | open url image1

[12]  J. E. Anthony, J. S. Brooks, D. L. Eaton, S. R. Parkin, J. Am. Chem. Soc. 2001, 123, 9482.
         | CrossRef | 1:CAS:528:DC%2BD3MXmt1Olurg%3D&md5=682c548ef798ad18c8cbe7dd25090da2CAS | open url image1

[13]  D. Lehnherr, J. Gao, F. A. Hegmann, R. R. Tykwinski, Org. Lett. 2008, 10, 4779.
         | CrossRef | 1:CAS:528:DC%2BD1cXhtF2lsrrK&md5=d806bab7fc106f4adbb0972861491651CAS | open url image1

[14]  D. Lehnherr, A. H. Murray, R. McDonald, M. J. Ferguson, R. R. Tykwinski, Chem. Eur. J. 2009, 15, 12580.
         | CrossRef | 1:CAS:528:DC%2BD1MXhsVKgtrbK&md5=d6ea36260f407042f0f344218b03653aCAS | open url image1

[15]  I. H. Campbell, B. K. Crone, J. Appl. Phys. 2007, 101, 024502.
         | CrossRef | open url image1

[16]  J. Gao, F. A. Hegmann, Appl. Phys. Lett. 2008, 93, 223306.
         | CrossRef | open url image1

[17]  D. Lehnherr, A. H. Murray, R. McDonald, R. R. Tykwinski, Angew. Chem. Int. Ed. 2010, 49, 6190.
         | CrossRef | 1:CAS:528:DC%2BC3cXhtVejsr7M&md5=d95a9e48147a20e581fab6a146f66310CAS | open url image1

[18]  (a) H. Pang, F. Vilela, P. J. Skabara, J. J. W. McDouall, D. J. Crouch, T. D. Anthopoulos, D. D. C. Bradley, D. M. de Leeuw, P. N. Horton, M. B. Hursthouse, Adv. Mater. 2007, 19, 4438.
         | CrossRef | 1:CAS:528:DC%2BD1cXhtVWnu74%3D&md5=acf6d56717ad6409f2050841892ac8a6CAS | open url image1
      (b) T. Vehoff, B. Baumeier, A. Troisi, D. Andrienko, J. Am. Chem. Soc. 2010, 132, 11702.
         | CrossRef | open url image1

[19]     (a) (a) For a selection of anthracene-based polymers, see: M. W. Pelter, J. K. Stille, Macromolecules 1990, 23, 2418. doi:10.1021/MA00211A002
      (b) P. Hodge, G. A. Power, M. A. Rabjohns, Chem. Commun. 1997, 73.
         | CrossRef | open url image1
      (c) W. Cui, Y. Wu, H. Tian, Y. Geng, F. Wang, Chem. Commun. 2008, 1017.
         | CrossRef | open url image1
      (d) W. Cui, Y. Zhao, H. Tian, Z. Xie, Y. Geng, F. Wang, Macromolecules 2009, 42, 8021.
         | CrossRef | open url image1
      (e) J.-H. Park, D. S. Chung, D. H. Lee, H. Kong, I. H. Jung, M.-J. Park, N. S. Cho, C. E. Park, H.-K. Shim, Chem. Commun. 2010, 46, 1863.
         | CrossRef | open url image1
      (f) D. A. M. Egbe, S. Türk, S. Rathgeber, F. Kühnlenz, R. Jadhav, A. Wild, E. Birckner, G. Adam, A. Pivrikas, V. Cimrova, G. Knör, N. S. Sariciftci, H. Hoppe, Macromolecules 2010, 43, 1261.
         | CrossRef | open url image1
      (g) D. A. M. Egbe, B. Cornelia, J. Nowotny, W. Günther, E. Klemm, Macromolecules 2003, 36, 5459.
         | CrossRef | open url image1
      (h) M. S. Taylor, T. M. Swager, Angew. Chem. Int. Ed. 2007, 46, 8480.
         | CrossRef | open url image1
      (i) S. Tokito, K.-H. Weinfurtner, H. Fujikawa, T. Tsutsui, Y. Taga, Proc. SPIE-Int. Soc. Opt. Eng. 2001, 4105, 69. open url image1

[20]  T. Okamoto, Z. Bao, J. Am. Chem. Soc. 2007, 129, 10308.
         | CrossRef | 1:CAS:528:DC%2BD2sXos1ensbk%3D&md5=724c435e9250355e67a0148eda3644b7CAS | open url image1

[21]  T. Okamoto, Y. Jiang, F. Qu, A. C. Mayer, J. E. Parmer, M. D. McGehee, Z. Bao, Macromolecules 2008, 41, 6977.
         | CrossRef | 1:CAS:528:DC%2BD1cXhtFaitLfP&md5=fd0c55b97f210c3ca13dc720761b09fdCAS | open url image1

[22]  G. P. Miller, J. Mack, Org. Lett. 2000, 2, 3979.
         | CrossRef | 1:CAS:528:DC%2BD3cXotVakurk%3D&md5=77370ff98e4c476b95ceab419b14c6a5CAS | open url image1

[23]  T. Okamoto, Y. Jiang, H. A. Becerril, S. Hong, M. L. Senatore, M. L. Tang, M. F. Toney, T. Siegrist, Z. Bao, J. Mater. Chem 2011, 21, 7078.
         | CrossRef | 1:CAS:528:DC%2BC3MXlsV2nsrY%3D&md5=0749e092aa86b4200953904b254fb05fCAS | open url image1

[24]  Y. Jiang, T. Okamoto, H. A. Becerril, S. Hong, M. L. Tang, A. C. Mayer, J. E. Parmer, M. D. McGehee, Z. Bao, Macromolecules 2010, 43, 6361.
         | CrossRef | 1:CAS:528:DC%2BC3cXosleitbY%3D&md5=396e8c15c567f82a79467bdcdf309239CAS | open url image1

[25]  J.-Y. Balandier, F. Quist, S. Stas, B. Tylleman, C. Ragoen, A. Mayence, S. Bouzakraoui, J. Cornil, Y. H. Geerts, Org. Lett. 2011, 13, 548.
         | CrossRef | 1:CAS:528:DC%2BC3MXit1aruw%3D%3D&md5=ce0d15048a4eef4251cd27542edcf915CAS | open url image1

[26]  I. Osaka, T. Abe, S. Shinamura, K. Takimiya, J. Am. Chem. Soc. 2011, 133, 6852.
         | CrossRef | 1:CAS:528:DC%2BC3MXksVeitbo%3D&md5=6953a206e85ab975d1c42d244abeffdfCAS | open url image1

[27]  S. Shinamura, I. Osaka, E. Miyazaki, A. Nakao, M. Yamagishi, J. Takeya, K. Takimiya, J. Am. Chem. Soc. 2011, 133, 5024.
         | CrossRef | 1:CAS:528:DC%2BC3MXivFyhtro%3D&md5=2091f85d466c7d39302e66d443b8d404CAS | open url image1

[28]  J. E. Anthony, J. Gierschner, C. A. Landis, S. R. Parkin, J. B. Sherman, R. C. Bakus, Chem. Commun. 2007, 4746.
         | CrossRef | 1:CAS:528:DC%2BD2sXhtlSmurfL&md5=264f402f88c3ee7751542280105281f8CAS | open url image1

[29]  For the initial report of compound 65, see: Payne M. M.Odom S. A.Parkin S. R.Anthony J. E.Org. Lett. 2004, 63325. 10.1021/OL048686D

[30]  I. Kaur, W. Jia, R. P. Kopreski, S. Selvarasah, M. R. Dokmeci, C. Pramanik, N. E. McGruer, G. P. Miller, J. Am. Chem. Soc. 2008, 130, 16274.
         | CrossRef | 1:CAS:528:DC%2BD1cXhtlOrs73L&md5=7e9f58a43ceb30afa03418ce90fe04f0CAS | open url image1

[31]  B. M. Medina, J. E. Anthony, J. Gieschner, ChemPhysChem 2008, 9, 1519.
         | CrossRef | 1:CAS:528:DC%2BD1cXpvVOnt7w%3D&md5=757a58416584de6af58de5e0d218154bCAS | open url image1



Export Citation