Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Photocatalytic Water Oxidation Using Manganese Compounds Immobilized in Nafion Polymer Membranes

Karin J. Young A , Yunlong Gao A and Gary W. Brudvig A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Yale University, New Haven, CT 06520, USA.

B Corresponding author. Email: gary.brudvig@yale.edu

Australian Journal of Chemistry 64(9) 1221-1228 https://doi.org/10.1071/CH11178
Submitted: 4 May 2011  Accepted: 6 June 2011   Published: 27 July 2011

Abstract

Robust water oxidation catalysts using earth abundant metals are required as part of an overall scheme to convert sunlight into fuels. Here, we report the immobilization of [Mn4IVO5(terpy)4(H2O)2](ClO4)6 (terpy = 2,2′;6′,2′′-terpyridine), [Mn4O6(tacn)4](ClO4)4 (tacn = 1,4,7-triazacyclononane), and manganese dioxide nanoparticles in Nafion on fluorine-doped tin oxide conducting glass electrodes. The electrodes are illuminated with white light in the presence of an applied potential and the resulting photocurrent is assigned to the oxidation of solvent water. Photodecomposition of the tetrameric complexes results in a material that is more active for light-driven electrooxidation of water. The reactivity, wavelength dependence, and stability of the compounds in Nafion under illumination are discussed.


References

[1]  N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2006, 103, 15729.
         | CrossRef | open url image1

[2]  J. Limburg, J. S. Vrettos, L. M. Liable-Sands, A. L. Rheingold, R. H. Crabtree, G. W. Brudvig, Science 1999, 283, 1524.
         | CrossRef | open url image1

[3]  Y. Shimazaki, T. Nagano, H. Takesue, B. H. Ye, F. Tani, Y. Naruta, Angew. Chem. Int. Ed. 2004, 43, 98.
         | CrossRef | open url image1

[4]  R. Brimblecombe, G. F. Swiegers, G. C. Dismukes, L. Spiccia, Angew. Chem. Int. Ed. 2008, 47, 7335.
         | CrossRef | open url image1

[5]  D. J. Wasylenko, C. Ganesamoorthy, J. Borau-Garcia, C. P. Berlinguette, Chem. Commun. 2011, 47, 4249.
         | CrossRef | open url image1

[6]  S. W. Gersten, G. J. Samuels, T. J. Meyer, J. Am. Chem. Soc. 1982, 104, 4029.
         | CrossRef | open url image1

[7]  J. J. Concepcion, J. W. Jurss, J. L. Templeton, T. J. Meyer, J. Am. Chem. Soc. 2008, 130, 16462.
         | CrossRef | open url image1

[8]  I. Romero, M. Rodríguez, C. Sens, J. Mola, M. Rao Kollipara, L. Francàs, E. Mas-Marza, L. Escriche, A. Llobet, Inorg. Chem. 2008, 47, 1824.
         | CrossRef | open url image1

[9]  H.-W. Tseng, R. Zong, J. T. Muckerman, R. Thummel, Inorg. Chem. 2008, 47, 11763.
         | CrossRef | open url image1

[10]  N. D. McDaniel, F. J. Coughlin, L. L. Tinker, S. Bernhard, J. Am. Chem. Soc. 2008, 130, 210.
         | CrossRef | open url image1

[11]  J. F. Hull, D. Balcells, J. D. Blakemore, C. D. Incarvito, O. Eisenstein, G. W. Brudvig, R. H. Crabtree, J. Am. Chem. Soc. 2009, 131, 8730.
         | CrossRef | open url image1

[12]  K. Sivula, R. Zboril, F. Le Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, M. Graetzel, J. Am. Chem. Soc. 2010, 132, 7436.
         | CrossRef | open url image1

[13]  M. W. Kanan, D. G. Nocera, Science 2008, 321, 1072.
         | CrossRef | open url image1

[14]  Q. Yin, J. M. Tan, C. Besson, Y. V. Geletii, D. G. Musaev, A. E. Kuznetsov, Z. Luo, K. I. Hardcastle, C. L. Hill, Science 2010, 328, 342.
         | CrossRef | open url image1

[15]  D. M. Robinson, Y. B. Go, M. Greenblatt, G. C. Dismukes, J. Am. Chem. Soc. 2010, 132, 11467.
         | CrossRef | open url image1

[16]  Y. Gorlin, T. F. Jaramillo, J. Am. Chem. Soc. 2010, 132, 13612.
         | CrossRef | open url image1

[17]  A. Harriman, I. J. Pickering, J. M. Thomas, P. A. Christensen, J. Chem. Soc., Farad. Trans. 1 1988, 84, 2795.
         | CrossRef | open url image1

[18]  T. Nakagawa, N. S. Bjorge, R. W. Murray, J. Am. Chem. Soc. 2009, 131, 15578.
         | CrossRef | open url image1

[19]  J. D. Blakemore, N. D. Schley, D. Balcells, J. F. Hull, G. W. Olack, C. D. Incarvito, O. Eisenstein, G. W. Brudvig, R. H. Crabtree, J. Am. Chem. Soc. 2010, 132, 16017.
         | CrossRef | open url image1

[20]  J. D. Blakemore, N. D. Schley, G. W. Olack, C. D. Incarvito, G. W. Brudvig, R. H. Crabtree, Chem. Sci. 2011, 2, 94.
         | CrossRef | open url image1

[21]  J. P. McEvoy, G. W. Brudvig, Chem. Rev. 2006, 106, 4455.
         | CrossRef | open url image1

[22]  R. Tagore, H. Y. Chen, H. Zhang, R. H. Crabtree, G. W. Brudvig, Inorg. Chim. Acta 2007, 360, 2983.
         | CrossRef | open url image1

[23]  M. Yagi, K. Narita, J. Am. Chem. Soc. 2004, 126, 8084.
         | CrossRef | open url image1

[24]  W. Ruettinger, M. Yagi, K. Wolf, S. Bernasek, G. C. Dismukes, J. Am. Chem. Soc. 2000, 122, 10353.
         | CrossRef | open url image1

[25]  R. Brimblecombe, D. R. J. Kolling, A. M. Bond, G. C. Dismukes, G. F. Swiegers, L. Spiccia, Inorg. Chem. 2009, 48, 7269.
         | CrossRef | open url image1

[26]  R. K. Hocking, R. Brimblecombe, L.-Y. Chang, A. Singh, M. H. Cheah, C. Glover, W. H. Casey, L. Spiccia, Nat. Chem. 2011, 3, 461. open url image1

[27]  M. Yagi, M. Kasamastu, M. Kaneko, J. Mol. Catal. Chem. 2000, 151, 29.
         | CrossRef | open url image1

[28]  M. Hara, T. E. Mallouk, Chem. Comm. 2000, 190. open url image1

[29]  K. A. Mauritz, R. B. Moore, Chem. Rev. 2004, 104, 4535.
         | CrossRef | open url image1

[30]  H. Y. Chen, J. W. Faller, R. H. Crabtree, G. W. Brudvig, J. Am. Chem. Soc. 2004, 126, 7345.
         | CrossRef | open url image1

[31]  K. Wieghardt, U. Bossek, W. Gebert, Angew. Chem. Int. Ed. Engl. 1983, 22, 328.
         | CrossRef | open url image1

[32]  T. Wieprecht, J. Xia, U. Heinz, J. Dannacher, G. Schlingloff, J. Mol. Catal. Chem. 2003, 203, 113.
         | CrossRef | open url image1

[33]  R. Mohr, R. Van Eldik, H. Kelm, Inorg. Chem. 1985, 24, 3396.
         | CrossRef | open url image1

[34]  R. Tagore, H. Y. Chen, R. H. Crabtree, G. W. Brudvig, J. Am. Chem. Soc. 2006, 128, 9457.
         | CrossRef | open url image1

[35]  R. Tagore, R. H. Crabtree, G. W. Brudvig, Inorg. Chem. 2007, 46, 2193.
         | CrossRef | open url image1

[36]  Z. Liang, W. Chen, J. Liu, S. Wang, Z. Zhou, W. Li, G. Sun, Q. Xin, J. Membr. Sci. 2004, 233, 39.
         | CrossRef | open url image1

[37]  M. Morita, C. Iwakura, H. Tamura, Electrochim. Acta 1977, 22, 325.
         | CrossRef | open url image1

[38]  J. P. Hill, H. Palza, S. Alam, K. Ariga, A. L. Schumacher, F. D’Souza, C. E. Anson, A. K. Powell, Inorg. Chem. 2008, 47, 8306.
         | CrossRef | open url image1

[39]  N. T. McDevitt, W. L. Baun, Spectrochimica Acta 1964, 20, 799.
         | CrossRef | open url image1

[40]  G. A. Kolta, F. M. A. Kerim, A. A. A. Azim, Z. Anorg. Allg. Chem. 1971, 384, 260.
         | CrossRef | open url image1

[41]  E. M. Sproviero, J. A. Gascón, J. P. McEvoy, G. W. Brudvig, V. S. Batista, J. Am. Chem. Soc. 2008, 130, 3428.
         | CrossRef | open url image1

[42]  D. R. Gamelin, M. L. Kirk, T. L. Stemmler, S. Pal, W. H. Armstrong, J. E. Penner-Hahn, E. I. Solomon, J. Am. Chem. Soc. 1994, 116, 2392.
         | CrossRef | open url image1

[43]  S. Devaraj, N. Munichandraiah, J. Electrochem. Soc. 2007, 154, A80.
         | CrossRef | open url image1



Rent Article (via Deepdyve) Export Citation Cited By (12)