Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Organometallic Complexes for Non-linear Optics. 49.* Third-Order Non-linear Optical Spectral Dependence Studies of Arylalkynylruthenium Dendrimers

Marek Samoc A B D , T. Christopher Corkery C , Andrew M. McDonagh C , Marie P. Cifuentes C and Mark G. Humphrey C D
+ Author Affiliations
- Author Affiliations

A Institute of Physical and Theoretical Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland.

B Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200, Australia.

C Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia.

D Corresponding authors. Email: marek.samoc@pwr.wroc.pl; Mark.Humphrey@anu.edu.au

Australian Journal of Chemistry 64(9) 1269-1273 https://doi.org/10.1071/CH11191
Submitted: 8 May 2011  Accepted: 5 July 2011   Published: 16 September 2011

Abstract

The cubic hyperpolarizabilities of 1,3,5-(trans-[RuCl(dppe)2(C≡CC6H4-4-C≡C)])3C6H3 (1), 1,3,5-(trans-[Ru(C≡CPh)(dppe)2(C≡CC6H4-4-C≡C)])3C6H3 (2), 1,3,5-(trans-[Ru(C≡CC6H4-4-NO2)(dppe)2(C≡CC6H4-4-C≡C)])3C6H3 (3), 1,3,5-{trans-[Ru(C≡C-3,5-(trans-[Ru(C≡CPh)(dppe)2(C≡CC6H4-4-C≡C)])2C6H3)(dppe)2(C≡CC6H4-4-C≡C)]}3C6H3 (4), and 1,3,5-{trans-[Ru(C≡C-3,5-(trans-[Ru(C≡CC6H4-4-NO2)(dppe)2(C≡CC6H4-4-C≡C)])2C6H3)(dppe)2(C≡CC6H4-4-C≡C)]}3C6H3 (5) have been assessed over the spectral range 520–1600 nm using the Z-scan technique and ~150 fs pulses. All complexes exhibit negative values of γreal (corresponding to self-defocusing behaviour) and significant positive values of γimag (corresponding to two-photon absorption) at short wavelengths (up to 1000 nm). The maximal values of γreal and γimag increase in magnitude on dendrimer generation increase (proceeding from 2 to 4 or 3 to 5). The open-aperture Z-scan results have been used to confirm and contrast the two-photon (2PA) and three-photon absorption (3PA) behaviour of 15, the data being consistent with the existence of 2PA at the short wavelength range, but with significant 3PA at longer wavelengths for 13 and 5, a record 3PA coefficient for an inorganic complex for 5 at 1180 nm, and appreciable 3PA at the telecommunications wavelength of 1300 nm.


References

[1]  G. S. He, L. S. Tan, Q. Zheng, P. N. Prasad, Chem. Rev. 2008, 108, 1245.
         | CrossRef | 1:CAS:528:DC%2BD1cXjslSntr4%3D&md5=eb57dc5884e020e35aa552d3f3438755CAS |

[2]  Samoć  M.J. Molec. Model. 2011, in press. https://doi.org/10.1007/S00894-010-0856-8

[3]  N. J. Long, Angew. Chem. Int. Ed. Engl. 1995, 34, 21.
         | CrossRef | 1:CAS:528:DyaK2MXjt12mu70%3D&md5=87cf9a0854bdd79c49357f778d650fe4CAS |

[4]  I. R. Whittall, A. M. McDonagh, M. G. Humphrey, M. Samoc, Adv. Organomet. Chem. 1998, 42, 291.
         | CrossRef | 1:CAS:528:DyaK1cXjs12jsbs%3D&md5=73346ae608c4529420253a304a7eddafCAS |

[5]  I. R. Whittall, A. M. McDonagh, M. G. Humphrey, M. Samoc, Adv. Organomet. Chem. 1998, 43, 349.
         | CrossRef | 1:CAS:528:DyaK1MXitFGisQ%3D%3D&md5=40b15b5dbb28fe3a5786806ea0b1c2f7CAS |

[6]  B. J. Coe, in Comprehensive Coordination Chemistry II 2004, Vol 9, Chapter 14, p. 621 (Eds J. A. McCleverty, T. J. Meyer) (Elsevier: Oxford).

[7]  J. P. Morrall, G. T. Dalton, M. G. Humphrey, M. Samoc, Adv. Organomet. Chem. 2007, 55, 61.
         | CrossRef |

[8]  (a) J. Pérez-Moreno, M. G. Kuzyk, Adv. Mater. 2011, 23, 1428.
         | CrossRef |
      (b) T. Schwich, M. P. Cifuentes, P. A. Gugger, M. Samoc, M. G. Humphrey, Adv. Mater. 2011, 23, 1433.
         | CrossRef |

[9]  C. E. Powell, M. G. Humphrey, Coord. Chem. Rev. 2004, 248, 725.
         | CrossRef | 1:CAS:528:DC%2BD2cXksF2rsrw%3D&md5=ee3bf673feeab64256ef4650669526a8CAS |

[10]  Green  K. A., Cifuentes  M. P., Samoc  M., Humphrey  M. G., Coord. Chem. Rev., in press. https://doi.org/10.1016/J.CCR.2011.02.021

[11]  C. E. Powell, J. P. Morrall, S. A. Ward, M. P. Cifuentes, E. G. A. Notaras, M. Samoc, M. G. Humphrey, J. Am. Chem. Soc. 2004, 126, 12234.
         | CrossRef | 1:CAS:528:DC%2BD2cXnsVaitro%3D&md5=4e7678857e528e7f729b50e6456c6c19CAS |

[12]  G. T. Dalton, M. P. Cifuentes, S. Petrie, R. Stranger, M. G. Humphrey, M. Samoc, J. Am. Chem. Soc. 2007, 129, 11882.
         | CrossRef | 1:CAS:528:DC%2BD2sXhtVWis7nE&md5=33893357b1700a4358f78d98c1c05c70CAS |

[13]  M. Samoc, G. T. Dalton, J. A. Gladysz, Q. Zheng, Y. Velkov, H. Ågren, P. Norman, M. G. Humphrey, Inorg. Chem. 2008, 47, 9946.
         | CrossRef | 1:CAS:528:DC%2BD1cXhtFygtLfF&md5=5cca185b00877061c8a2606a60b512b2CAS |

[14]  R. L. Roberts, T. Schwich, T. C. Corkery, M. P. Cifuentes, K. A. Green, J. D. Farmer, P. J. Low, T. B. Marder, M. Samoc, M. G. Humphrey, Adv. Mater. 2009, 21, 2318.
         | CrossRef | 1:CAS:528:DC%2BD1MXnt12ntL0%3D&md5=14603ce4aca4084b4649f9753cdd1ad7CAS |

[15]  K. A. Green, M. P. Cifuentes, T. C. Corkery, M. Samoc, M. G. Humphrey, Angew. Chem. Int. Ed. 2009, 48, 7867.
         | CrossRef | 1:CAS:528:DC%2BD1MXht1ekt7jO&md5=0818b6310c525e3468d83e3e7f245b2eCAS |

[16]  G. T. Dalton, M. P. Cifuentes, L. A. Watson, S. Petrie, R. Stranger, M. Samoc, M. G. Humphrey, Inorg. Chem. 2009, 48, 6534.
         | CrossRef | 1:CAS:528:DC%2BD1MXnsFKntL8%3D&md5=fa908d6ccb22defd582d5edc15f1c184CAS |

[17]  B. Babgi, L. Rigamonti, M. P. Cifuentes, T. C. Corkery, M. D. Randles, T. Schwich, S. Petrie, R. Stranger, A. Teshome, I. Asselberghs, K. Clays, M. Samoc, M. G. Humphrey, J. Am. Chem. Soc. 2009, 131, 10293.
         | CrossRef | 1:CAS:528:DC%2BD1MXotFKntbs%3D&md5=feea46fc350d19c800610717dc270ed8CAS |

[18]  C. Zhang, T. Matsumoto, M. Samoc, S. Meng, T. C. Corkery, S. Petrie, R. Stranger, J. Zhang, M. G. Humphrey, K. Tatsumi, Angew. Chem. Int. Ed. 2010, 49, 4209.
         | CrossRef | 1:CAS:528:DC%2BC3cXntVyksr0%3D&md5=fe641bf93404534d7b761e32a1d0c706CAS |

[19]  M. Samoc, J. P. Morrall, G. T. Dalton, M. P. Cifuentes, M. G. Humphrey, Angew. Chem. Int. Ed. 2007, 46, 731.
         | CrossRef | 1:CAS:528:DC%2BD2sXhtlekurY%3D&md5=1ccd4f2f3e5d974445defbe4585d7dc4CAS |

[20]  C. J. Jeffery, M. P. Cifuentes, A. C. Willis, M. Samoc, M. G. Humphrey, Macromol. Rapid Commun. 2010, 31, 846.
         | CrossRef | 1:CAS:528:DC%2BC3cXmsVOju7w%3D&md5=90a4455cb5378df490a13fdf3a31b07dCAS |

[21]  A. M. McDonagh, C. E. Powell, J. P. Morrall, M. P. Cifuentes, M. G. Humphrey, Organometallics 2003, 22, 1402.
         | CrossRef | 1:CAS:528:DC%2BD3sXhsVaqu7Y%3D&md5=2b1e901c9325d38ebf10b39400897f7bCAS |

[22]  K. A. Green, M. P. Cifuentes, M. Samoc, M. G. Humphrey, Coord. Chem. Rev. 2011, 255, 2025.
         | CrossRef | 1:CAS:528:DC%2BC3MXpt1CisL8%3D&md5=c372804a14c642841d2e1d6064c846ddCAS |

[23]  C. E. Powell, S. K. Hurst, J. P. Morrall, R. L. Roberts, M. P. Cifuentes, M. Samoc, M. G. Humphrey, Organometallics 2007, 26, 4456.
         | CrossRef | 1:CAS:528:DC%2BD2sXosVCkt7g%3D&md5=8544e76e645ff52d3dde22e49ece0a47CAS |

[24]  M. Samoc, A. Samoc, G. T. Dalton, M. P. Cifuentes, M. G. Humphrey, P. A. Fleitz, in Multiphoton Processes in Organics and Their Application 2011, Chapter 7, p. 341 (Eds I. Rau, F. Kajzar) (Old City Publishing: Philadelphia).



Rent Article (via Deepdyve) Export Citation Cited By (9)