Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Photocatalytic Hydrogen Evolution Using 9-Phenyl-10-methyl-acridinium Ion Derivatives as Efficient Electron Mediators and Ru-Based Catalysts

Yusuke Yamada A , Kentaro Yano A and Shunichi Fukuzumi A B C

A Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan.

B Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea.

C Corresponding author. Email: fukuzumi@chem.eng.osaka-u.ac.jp

Australian Journal of Chemistry 65(12) 1573-1581 http://dx.doi.org/10.1071/CH12294
Submitted: 19 June 2012  Accepted: 1 August 2012   Published: 13 September 2012

Abstract

Photocatalytic hydrogen evolution has been performed by photoirradiation (λ > 420 nm) of a mixed solution of a phthalate buffer and acetonitrile (MeCN) (1 : 1 (v/v)) containing EDTA disodium salt (EDTA), [RuII(bpy)3]2+ (bpy = 2,2′-bipyiridine), 9-phenyl-10-methylacridinium ion (Ph–Acr+–Me), and Pt nanoparticles (PtNPs) as a sacrificial electron donor, a photosensitiser, an electron mediator, and a hydrogen-evolution catalyst, respectively. The hydrogen-evolution rate of the reaction system employing Ph–Acr+–Me as an electron mediator was more than 10 times higher than that employing a conventional electron mediator of methyl viologen. In this reaction system, ruthenium nanoparticles (RuNPs) also act as a hydrogen-evolution catalyst as well as the PtNPs. The immobilization of the efficient electron mediator on the surface of a hydrogen-evolution catalyst is expected to enhance the hydrogen-evolution rate. The methyl group of Ph–Acr+–Me was chemically modified with a carboxy group (Ph–Acr+–CH2COOH) to interact with metal oxide surfaces. In the photocatalytic hydrogen-evolution system using Ph–Acr+–CH2COOH and Pt-loaded ruthenium oxide nanoparticles (Pt/RuO2NPs) as electron donor and hydrogen-evolution catalyst, respectively, the hydrogen-evolution rate was 1.5–2 times faster than the reaction system using Ph–Acr+–Me as an electron mediator. On the other hand, no enhancement in the hydrogen-evolution rate was observed in the reaction system using Ph–Acr+–CH2COOH with PtNPs. Thus, the enhancement of hydrogen-evolution rate originated from the favourable interaction between Ph–Acr+–CH2COOH and RuO2NPs. These results suggest that the use of Ph–Acr+–Me as an electron mediator enables the photocatalytic hydrogen evolution using PtNPs and RuNPs as hydrogen-evolution catalysts, and the chemical modification of Ph–Acr+–Me with a carboxy group paves the way to utilise a supporting catalyst, Pt loaded on a metal oxide, as a hydrogen-evolution catalyst.

Graphical Abstract Image


References

[1]  S. Dunn, in Encyclopedia of Energy (Ed. C. J. Cleaveland) 2004, Vol. 3, pp. 241–252 (Elsevier/Academic Press: San Diego, CA).

[2]  S. Fukuzumi, Eur. J. Inorg. Chem. 2008, 1351.
         | CrossRef | 1:CAS:528:DC%2BD1cXltFSht7o%3D&md5=8c1e32a769887e65bac3e7b839d1f63aCAS | open url image1

[3]  M. Momirlan, T. N. Veziroglub, Int. J. Hydrogen Energy 2005, 30, 795.
         | CrossRef | 1:CAS:528:DC%2BD2MXjtVyltrs%3D&md5=4314fe7c4f372f26cebabd5e7494d473CAS | open url image1

[4]  S. Fukuzumi, Y. Yamada, T. Suenobu, K. Ohkubo, H. Kotani, Energ. Environ. Sci. 2011, 4, 2754.
         | 1:CAS:528:DC%2BC3MXhtFSrs7rJ&md5=e700ff9ff25d531132ae25d4806b2257CAS | open url image1

[5]  G. Laurenczy, in Encyclopedia of Catalysis (Ed. I. T. Horvath) 2010 (Wiley-Interscience: Hoboken, NJ). 10.1002/0471227617.EOC111.PUB2

[6]  H. B. Gray, Nat. Chem. 2009, 1, 7.
         | CrossRef | 1:CAS:528:DC%2BD1MXktlSltLk%3D&md5=e8a621748e978149c242c4c8f7353473CAS | open url image1

[7]  N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2006, 103, 15729.
         | CrossRef | 1:CAS:528:DC%2BD28XhtFymtbrJ&md5=e4252961598780ced30bcd2df19c9437CAS | open url image1

[8]  D. G. Nocera, Chem. Soc. Rev. 2009, 38, 13.
         | CrossRef | 1:CAS:528:DC%2BD1cXhsFWjtLrK&md5=57e758209f3fe49bf380324ddf373438CAS | open url image1

[9]  (a) P. A. Brugger, P. Cuendet, M. Grätzel, J. Am. Chem. Soc. 1981, 103, 2923.
         | CrossRef | 1:CAS:528:DyaL3MXktFGrt7s%3D&md5=f9de499da488416ac502bc193097baeaCAS | open url image1
      (b) C. K. Grätzel, M. Grätzel, J. Am. Chem. Soc. 1979, 101, 7741.
         | CrossRef | open url image1
      (c) K. Kalyanasundaram, J. Kiwi, M. Grätzel, Helv. Chim. Acta 1978, 61, 2720.
         | CrossRef | open url image1
      (d) J. Kiwi, M. Grätzel, Angew. Chem. Int. Ed. 1979, 18, 624.
         | CrossRef | open url image1
      (e) J. Kiwi, M. Grätzel, Nature 1979, 281, 657.
         | CrossRef | open url image1
      (f) J. Kiwi, M. Grätzel, J. Am. Chem. Soc. 1979, 101, 7214.
         | CrossRef | open url image1
      (g) J. Kiwi, K. Kalyanasundaram, M. Grätzel, Sol. Energ. Mater. 1982, 49, 37.
         | CrossRef | open url image1

[10]  H. B. Gray, A. W. Maverick, Science 1981, 214, 1201.
         | CrossRef | 1:CAS:528:DyaL38Xht1Kit7s%3D&md5=959198df0ab30912b149c296c3839f20CAS | open url image1

[11]  (a) G. M. Brown, B. S. Brunschwig, C. Creutz, J. F. Endicott, N. Sutin, J. Am. Chem. Soc. 1979, 101, 1298.
         | CrossRef | 1:CAS:528:DyaE1MXhs1SjtLk%3D&md5=b34b2929be7d4d1d547498fd001f059bCAS | open url image1
      (b) S. F. Chan, M. Chou, C. Creutz, T. Matsubara, N. Sutin, J. Am. Chem. Soc. 1981, 103, 369.
         | CrossRef | open url image1
      (c) N. Sutin, C. Creutz, E. Fujita, Comment. Inorg. Chem. 1997, 19, 67.
         | CrossRef | open url image1

[12]  (a) N. Toshima, Pure Appl. Chem. 2000, 72, 317.
         | CrossRef | 1:CAS:528:DC%2BD3cXjsVGrtLg%3D&md5=430480db35947975e9da15a2eb9f0605CAS | open url image1
      (b) N. Toshima, K. Hirakawa, Polym. J. 1999, 31, 1127.
         | CrossRef | open url image1
      (c) N. Toshima, M. Kuriyama, Y. Yamada, H. Hirai, Chem. Lett. 1981, 10, 793.
         | CrossRef | open url image1
      (d) N. Toshima, T. Yonezawa, Makromol. Chem. Macromol. Symp. 1992, 59, 281.
         | CrossRef | open url image1
      (e) N. Toshima, T. Yonezawa, New J. Chem. 1998, 22, 1179.
         | CrossRef | open url image1

[13]  (a) T. Yonezawa, N. Toshima, J. Mol. Catal. 1993, 83, 167.
         | CrossRef | 1:CAS:528:DyaK2cXhs1ehtA%3D%3D&md5=f822f25862ed8ebfb6062e6c72b126d0CAS | open url image1
      (b) I. Okura, N. Kimthuan, J. Mol. Catal. 1979, 6, 227.
         | CrossRef | open url image1
      (c) I. Okura, M. Takeuchi, N. Kimthuan, Photochem. Photobiol. 1981, 33, 413.
         | CrossRef | open url image1
      (d) I. Okura, S. Aono, S. Kusunoki, Inorg. Chim. Acta 1983, 71, 77.
         | CrossRef | open url image1

[14]  (a) L. Persaud, A. J. Bard, A. Campion, M. A. Fox, T. E. Mallouk, S. E. Webber, J. M. White, J. Am. Chem. Soc. 1987, 109, 7309.
         | CrossRef | 1:CAS:528:DyaL2sXmt1Sntro%3D&md5=dd1e44a2fb99ad81bfc6b5215f0e5b26CAS | open url image1
      (b) D. L. Jiang, C. K. Choi, K. Honda, W. S. Li, T. Yuzawa, T. Aida, J. Am. Chem. Soc. 2004, 126, 12084.
         | CrossRef | open url image1

[15]  (a) Y. Amao, ChemCatChem 2011, 3, 458.
         | CrossRef | 1:CAS:528:DC%2BC3MXisFWltLY%3D&md5=ee60ec9ddae6249219590e0b0d3e950cCAS | open url image1
      (b) N. Himeshima, Y. Amao, Energy Fuels 2003, 17, 1641.
         | CrossRef | open url image1

[16]  (a) S. Rau, B. Schafer, D. Gleich, E. Anders, M. Rudolph, M. Friedrich, H. Gorls, W. Henry, J. G. Vos, Angew. Chem. Int. Ed. 2006, 45, 6215.
         | CrossRef | 1:CAS:528:DC%2BD28XhtVWhtr7E&md5=fcd5871c61e7a62c67484c6ce30c0cd8CAS | open url image1
      (b) S. Tschierlei, M. Karnahl, M. Presselt, B. Dietzek, J. Guthmuller, L. Gonzalez, M. Schmitt, S. Rau, J. Popp, Angew. Chem. Int. Ed. 2010, 49, 3981.
         | CrossRef | open url image1
      (c) S. Tschierlei, M. Presselt, C. Kuhnt, A. Yartsev, T. Pascher, V. Sundstrom, M. Karnahl, M. Schwalbe, B. Schafer, S. Rau, M. Schmitt, B. Dietzek, J. Popp, Chem.–Eur. J. 2009, 15, 7678.
         | CrossRef | open url image1

[17]  (a) H. Ozawa, M. A. Haga, K. Sakai, J. Am. Chem. Soc. 2006, 128, 4926.
         | CrossRef | 1:CAS:528:DC%2BD28XivVeltrc%3D&md5=91f6e2e62cd4308c078fb79eecc0e2a0CAS | open url image1
      (b) H. Ozawa, M. Kobayashi, B. Balan, S. Masaoka, K. Sakai, Chem. Asian J. 2010, 5, 1860.
         | CrossRef | open url image1
      (c) H. Ozawa, K. Sakai, Chem. Commun. 2011, 47, 2227.
         | CrossRef | open url image1
      (d) H. Ozawa, Y. Yokoyama, M. Haga, K. Sakai, Dalton Trans. 2007, 1197.
         | CrossRef | open url image1
      (e) S. Tanaka, S. Masaoka, K. Yamauchi, M. Annaka, K. Sakai, Dalton Trans. 2010, 39, 11218.
         | CrossRef | open url image1

[18]  (a) M. Wang, Y. Na, M. Gorlov, L. Sun, Dalton Trans. 2009, 6458.
         | CrossRef | 1:CAS:528:DC%2BD1MXps1Kls7w%3D&md5=666b951b88c75e160cf394478930c125CAS | open url image1
      (b) P. Zhang, M. Wang, J. Dong, X. Li, F. Wang, L. Wu, L. Sun, J. Phys. Chem. C 2010, 114, 15868.
         | CrossRef | open url image1
      (c) P. Zhang, M. Wang, C. Li, X. Li, J. Dong, L. Sun, Chem. Commun. 2010, 46, 8806.
         | CrossRef | open url image1
      (d) P. Zhang, M. Wang, Y. Na, X. Li, Y. Jiang, L. Sun, Dalton Trans. 2010, 39, 1204.
         | CrossRef | open url image1
      (e) W. Gao, J. Sun, M. Li, T. Åkermark, K. Romare, L. Sun, B. Åkermark, Eur. J. Inorg. Chem. 2011, 1100.
         | CrossRef | open url image1

[19]  M. Grätzel, Acc. Chem. Res. 1981, 14, 376.
         | CrossRef | open url image1

[20]  (a) E. Amouyal, B. Zidler, P. Keller, A. Moradpour, Chem. Phys. Lett. 1980, 74, 314.
         | CrossRef | 1:CAS:528:DyaL3MXpvFSh&md5=e3a3f9afb54e47e0b7333aa55e327d4eCAS | open url image1
      (b) E. Amouyal, B. Zidler, Isr. J. Chem. 1982, 22, 117. open url image1

[21]  P. Keller, A. Moradpour, E. Amouyal, B. Zidler, J. Mol. Catal. 1981, 12, 261.
         | CrossRef | 1:CAS:528:DyaL3MXlslOlt78%3D&md5=0ab55d8db5c30dfcb262ca9d30ffc544CAS | open url image1

[22]  C. Königstein, J. Photochem. Photobiol. A 1995, 90, 141.
         | CrossRef | open url image1

[23]  C. V. Krishnan, N. Sutin, J. Am. Chem. Soc. 1981, 103, 2141.
         | CrossRef | 1:CAS:528:DyaL3MXitVSks78%3D&md5=8ffd40f1f936828020e23a1911e3ed21CAS | open url image1

[24]  C. V. Krishnan, B. S. Brunschwig, C. Creutz, N. Sutin, J. Am. Chem. Soc. 1985, 107, 2005.
         | CrossRef | 1:CAS:528:DyaL2MXhsVSlsr4%3D&md5=83abaea5d230510f2477e1de2d3e5a74CAS | open url image1

[25]  J. Hawecker, J.-M. Lehn, R. Ziessel, Nouv. J. Chim. 1983, 7, 271.
         | 1:CAS:528:DyaL3sXkvFSqurc%3D&md5=f14061a421e2bf97bc3f3a4acb3adcbeCAS | open url image1

[26]  J.-M. Lehn, J. P. Sauvage, Nouv. J. Chim. 1977, 1, 449.
         | 1:CAS:528:DyaE1cXht1yqtbw%3D&md5=cfb565534828e7e5266257df624bdddbCAS | open url image1

[27]  G. M. Brown, S. F. Chan, C. Creutz, H. A. Schwarz, N. Sutin, J. Am. Chem. Soc. 1979, 101, 7638.
         | CrossRef | 1:CAS:528:DyaL3cXhtlGqsQ%3D%3D&md5=494dfe2fbdbd4862e5dff6a6250c64ecCAS | open url image1

[28]  S. F. Chan, M. Chou, C. Creutz, T. Matsubara, N. Sutin, J. Am. Chem. Soc. 1981, 103, 369.
         | CrossRef | 1:CAS:528:DyaL3MXptFSrsw%3D%3D&md5=974e7667fd6e1b60fbd8a09b258fa744CAS | open url image1

[29]  M. Kirch, J.-M. Lehn, J. P. Sauvage, Helv. Chim. Acta 1979, 62, 1345.
         | CrossRef | 1:CAS:528:DyaE1MXltFSjsb8%3D&md5=6ebb3989a35226d0b8423f4c4daaad7bCAS | open url image1

[30]  S. Harinipriya, M. V. Sangaranarayanan, Langmuir 2002, 18, 5572.
         | CrossRef | 1:CAS:528:DC%2BD38XksFOrt7Y%3D&md5=d94a3feb1c91f8df26b0f3214c617e74CAS | open url image1

[31]  (a) J. L. Dempsey, J. R. Winkler, H. B. Gray, J. Am. Chem. Soc. 2010, 132, 1060.
         | CrossRef | 1:CAS:528:DC%2BC3cXhtlCl&md5=2e760cb181a75ad9647cb4acd687ea8eCAS | open url image1
      (b) J. L. Dempsey, J. R. Winkler, H. B. Gray, J. Am. Chem. Soc. 2010, 132, 16774.
         | CrossRef | open url image1
      (c) J. L. Dempsey, B. S. Brunschwig, J. R. Winkler, H. B. Gray, Acc. Chem. Res. 2009, 42, 1995.
         | CrossRef | open url image1

[32]  (a) P. W. Du, K. Knowles, R. Eisenberg, J. Am. Chem. Soc. 2008, 130, 12576.
         | CrossRef | 1:CAS:528:DC%2BD1cXhtVCmsrrM&md5=03e715766bfb818e764ac0bb5cd45349CAS | open url image1
      (b) T. Lazarides, T. Mccormick, P. W. Du, G. G. Luo, B. Lindley, R. Eisenberg, J. Am. Chem. Soc. 2009, 131, 9192.
         | CrossRef | open url image1

[33]  X. L. Hu, B. S. Brunschwig, J. C. Peters, J. Am. Chem. Soc. 2007, 129, 8988.
         | CrossRef | 1:CAS:528:DC%2BD2sXmvFKqs7k%3D&md5=0659bf80ba4b3baef045539ec41268efCAS | open url image1

[34]  (a) B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jorgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, J. K. Nørskov, J. Am. Chem. Soc. 2005, 127, 5308.
         | CrossRef | 1:CAS:528:DC%2BD2MXis1Ojs78%3D&md5=a392799592c8013377d3ee5cc90c35f7CAS | open url image1
      (b) H. I. Karunadasa, C. J. Chang, J. R. Long, Nature 2010, 464, 1329.
         | CrossRef | open url image1

[35]  L. Loy, E. E. Wolf, Sol. Energy 1985, 34, 455.
         | CrossRef | 1:CAS:528:DyaL2MXlt1Knt7w%3D&md5=e95494acaadffcb718709d875bb96785CAS | open url image1

[36]  (a) Y. Yamada, T. Miyahigashi, H. Kotani, K. Ohkubo, S. Fukuzumi, J. Am. Chem. Soc. 2011, 133, 16136.
         | CrossRef | 1:CAS:528:DC%2BC3MXhtFygu7vM&md5=bac9c3c5e6ad980876a482e6b8960e43CAS | open url image1
      (b) Y. Yamada, T. Miyahigashi, H. Kotani, K. Ohkubo, S. Fukuzumi, Energ. Environ. Sci. 2012, 5, 6111. open url image1

[37]  H. Kotani, R. Hanazaki, K. Ohkubo, Y. Yamada, S. Fukuzumi, Chem.–Eur. J. 2011, 17, 2777.
         | CrossRef | 1:CAS:528:DC%2BC3MXitFajtrk%3D&md5=2f361838970130cc704306509ff8e2b7CAS | open url image1

[38]  E. Amouyal, P. Keller, A. Moradpour, J. Chem. Soc., Chem. Commun. 1980, 1019.
         | CrossRef | 1:CAS:528:DyaL3MXjtlGkug%3D%3D&md5=c5a7b4a4bfa3eeb85806b842e8e1c6d8CAS | open url image1

[39]  J. M. Kleijn, Colloid Polym. Sci. 1987, 265, 1105.
         | CrossRef | 1:CAS:528:DyaL1cXhtVWktL8%3D&md5=7f89a60ed9b93e41a4ef9b242edec33fCAS | open url image1

[40]  E. Amouyal, Sol. Energy Mater. Sol. Cells 1995, 38, 249.
         | CrossRef | 1:CAS:528:DyaK2MXotVehu7c%3D&md5=1b8702e259a5fffaaa282b6cc0ea6146CAS | open url image1

[41]  (a) K. Ohkubo, K. Suga, S. Fukuzumi, Chem. Commun. 2006, 2018.
         | CrossRef | 1:CAS:528:DC%2BD28XktlWlt7s%3D&md5=0b57b88e5adb07e34f9cc5701bb393aaCAS | open url image1
      (b) K. Suga, K. Ohkubo, S. Fukuzumi, J. Phys. Chem. A 2005, 109, 10168.
         | CrossRef | open url image1

[42]     (a) R. W. G. Wyckoff, Crystal Structures 1963, 2nd edn (Interscience Publishers: New York, NY).
      (b) W. H. Baur, A. A. Khan, Acta Crystallogr. B 1971, 27, 2133.
         | CrossRef | open url image1

[43]  S. Fukuzumi, R. Hanazaki, H. Kotani, K. Ohkubo, J. Am. Chem. Soc. 2010, 132, 11002.
         | CrossRef | 1:CAS:528:DC%2BC3cXpsVCitLc%3D&md5=4ef102abfb0f453939607d07b2c06527CAS | open url image1

[44]  H. Kotani, K. Ohkubo, Y. Takai, S. Fukuzumi, J. Phys. Chem. B 2006, 110, 24047.
         | CrossRef | 1:CAS:528:DC%2BD28XhtFOhtLzI&md5=db592517b22ca109dc2678d104dd0b49CAS | open url image1



Supplementary MaterialSupplementary Material (360 KB) Export Citation