Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Development and Evaluation of a Raman Flow Cell for Monitoring Continuous Flow Reactions

Grant Chaplain A , Stephen J. Haswell A C , Paul D. I. Fletcher A , Stephen M. Kelly A and Andrew Mansfield B

A Department of Chemistry, University of Hull, Hull, HU6 7RX, UK.

B Flow Chemistry Solutions, Room F 238, Building 130, Abbott Drive, Kent Science Park, Sittingbourne, Kent, ME9 8AZ, UK.

C Corresponding author. Email: s.j.haswell@hull.ac.uk

Australian Journal of Chemistry 66(2) 208-212 https://doi.org/10.1071/CH12379
Submitted: 15 August 2012  Accepted: 4 December 2012   Published: 11 January 2013

Abstract

We show how in-line Raman spectroscopy can be used to monitor both reactant and product concentrations for a heterogeneously catalysed Suzuki cross reaction operating in continuous flow. The flow system consisted of an HPLC pump to drive a homogeneous mixture of the reactants (4-bromobenzonitrile, phenylboronic acid, and potassium carbonate) through an oven heated (80°C) palladium catalyst immobilised on a silica monolith. A custom built PTFE in-line flow cell with a quartz window enabled the coupling of an Ocean Optics Raman spectrometer probe to monitor both the reactants and product (4-cyanobiphenyl). Calibration was based on obtaining multivariate spectral data in the range 1530 cm–1 and 1640 cm–1 and using partial least-squares regression (PLSR) to obtain a calibration model which was validated using gas chromatography–mass spectrometry (GCMS) analysis. In-line Raman monitoring of the reactant and product concentrations enable (i) determination of reaction kinetic information such as the empirical rate law and associated rate constant and (ii) optimisation of either the product conversion (61 % at 0.02 mL min–1 generating 17 g h–1) or product yield (14 % at 0.24 mL min–1 generating 53 g h–1).


References

[1]  B. Ahmed-Omer, J. C. Brandt, T. Wirth, Org. Biomol. Chem. 2007, 5, 733.
         | CrossRef | 1:CAS:528:DC%2BD2sXhvFSlsr8%3D&md5=9337fa01afce17366974a584e37f26d3CAS | open url image1

[2]  T. Noel, J. R. Naber, R. L. Hartman, J. P. McMullen, K. F. Jensen, S. L. Buchwald, Chem. Sci. 2011, 2, 287.
         | CrossRef | 1:CAS:528:DC%2BC3MXmsVOjtA%3D%3D&md5=f5eed17b56c6d03a4a03aba4828a3b71CAS | open url image1

[3]  A. Sniady, M. W. Bedore, T. F. Jamison, Angew. Chem. 2011, 123, 2203.
         | CrossRef | open url image1

[4]  J. Moorthy, C. Khoury, J. S. Moore, D. J. Beebe, Sens. Actuators B Chem. 2001, 75, 223.
         | CrossRef | open url image1

[5]  K. J. Shaw, P. T. Docker, J. V. Yelland, C. E. Dyer, J. Greenman, G. M. Greenway, S. J. Haswell, Lab Chip 2010, 10, 1725.
         | CrossRef | 1:CAS:528:DC%2BC3cXnsVWitbc%3D&md5=d11e0ca9bc59388aec7751c612a3ddc8CAS | open url image1

[6]  D. Cantillo, H. Sheibani, C. O. Kappe, J. Org. Chem. 2012, 77, 2463.
         | CrossRef | 1:CAS:528:DC%2BC38XitVeqs7k%3D&md5=d9351c4b40565223a830ce5879ba3eb0CAS | open url image1

[7]  Y. Matsushita, N. Ohba, T. Suzuki, T. Ichimura, Catal. Today 2008, 132, 153.
         | CrossRef | 1:CAS:528:DC%2BD1cXisVensbk%3D&md5=906e5bb1b7ab2d278709e5e821bca694CAS | open url image1

[8]  P. He, P. Watts, F. Marken, S. J. Haswell, Green Chem. 2007, 9, 20.
         | CrossRef | 1:CAS:528:DC%2BD2sXhtVegtw%3D%3D&md5=3d2df12920b111f057777a957393ce78CAS | open url image1

[9]  Y. Kikutani, T. Kitamori, Macromol. Rapid Commun. 2004, 25, 158.
         | CrossRef | 1:CAS:528:DC%2BD2cXptl2ksQ%3D%3D&md5=281ef4e932c800af26c3d353848c349aCAS | open url image1

[10]  S. Liu, T. Fukuyama, M. Sato, I. Ryu, Org. Process Res. Dev. 2004, 8, 477.
         | CrossRef | 1:CAS:528:DC%2BD2cXis1Cit7w%3D&md5=15179012fa9a9c3571d5f41c5fa1b115CAS | open url image1

[11]  P. He, S. J. Haswell, P. D. I. Fletcher, Appl. Catal. A Gen. 2004, 274, 111.
         | CrossRef | 1:CAS:528:DC%2BD2cXntlSjsr0%3D&md5=ee232ba3123da0e1be40286669da0421CAS | open url image1

[12]  M. Larhed, C. Moberg, A. Hallberg, Acc. Chem. Res. 2002, 35, 717.
         | CrossRef | 1:CAS:528:DC%2BD38XkslehsLo%3D&md5=6a9b91377908f89921232432cf0fc32fCAS | open url image1

[13]  N. T. S. Phan, J. Khan, P. Styring, Tetrahedron 2005, 61, 12065.
         | CrossRef | 1:CAS:528:DC%2BD2MXht1GitrnP&md5=1b60bcf7a9c4ff6a1066a5d07e7ae033CAS | open url image1

[14]  P. He, S. J. Haswell, P. D. I. Fletcher, S. M. Kelly, A. Mansfield, Beilstein J. Org. Chem. 2011, 7, 1150.
         | CrossRef | 1:CAS:528:DC%2BC3MXhtF2ns7zI&md5=350198bab221adedb9f9410c9d7d0b33CAS | open url image1

[15]  A. de la Hoz, A. Diaz-Ortiz, A. Moreno, Chem. Soc. Rev. 2005, 34, 164.
         | CrossRef | 1:CAS:528:DC%2BD2MXmvFCrtg%3D%3D&md5=6d857c4b646241399f189149f731c2fcCAS | open url image1

[16]  M. N. Slyadnev, Y. Tanaka, M. Tokeshi, T. Kitamori, Anal. Chem. 2001, 73, 4037.
         | CrossRef | 1:CAS:528:DC%2BD3MXltVWrsbY%3D&md5=c87ab14f9319932250b21b75cd3b95d7CAS | open url image1

[17]  C. D. Smith, I. R. Baxendale, S. Lanners, J. J. Hayward, S. C. Smith, S. V. Ley, Org. Biomol. Chem. 2007, 5, 1559.
         | CrossRef | 1:CAS:528:DC%2BD2sXmsV2jtLc%3D&md5=dbb11d5477c3186c84777bdc8ea59a9aCAS | open url image1

[18]  J. Stripeikis, P. Costa, M. Tudino, O. Troccoli, Anal. Chim. Acta 2000, 408, 191.
         | CrossRef | 1:CAS:528:DC%2BD3cXhsVWrsLo%3D&md5=d5b2b101a7be3c4541886e189a1a334bCAS | open url image1

[19]  G. Shore, S. Morin, M. G. Organ, Angew. Chem. 2006, 118, 2827.
         | CrossRef | open url image1

[20]  J. W. Schoppelrei, M. L. Kieke, X. Wang, M. T. Klein, T. B. Brill, J. Phys. Chem. 1996, 100, 14343.
         | CrossRef | 1:CAS:528:DyaK28Xks1CmtLc%3D&md5=dd9502defeecf2140b4f49acb2672b8cCAS | open url image1

[21]  J. A. Banister, P. D. Lee, M. Poliakoff, Organometallics 1995, 14, 3876.
         | CrossRef | 1:CAS:528:DyaK2MXmvF2ht78%3D&md5=2170d72829535c15b07d286fc376b3cfCAS | open url image1

[22]  D. Ferri, A. Baiker, Top. Catal. 2009, 52, 1323.
         | CrossRef | 1:CAS:528:DC%2BD1MXoslGmtr0%3D&md5=487368c866620d8a5697e34471521595CAS | open url image1

[23]  A. Ruiz-Medina, E. J. Llorent-Martínez, J. Pharm. Biomed. Anal. 2010, 53, 250.
         | CrossRef | 1:CAS:528:DC%2BC3cXptVSrtr4%3D&md5=46cfa2d57798c2d64e981eff5376b817CAS | open url image1

[24]  S. Xu, W. Zhang, X. Liu, X. Han, X. Bao, J. Am. Chem. Soc. 2009, 131, 13722.
         | CrossRef | 1:CAS:528:DC%2BD1MXhtFWqtLnM&md5=190f2bb974af310ff134dd62d9c39435CAS | open url image1

[25]  P. D. I. Fletcher, S. J. Haswell, X. Zhang, Electrophoresis 2003, 24, 3239.
         | CrossRef | 1:CAS:528:DC%2BD3sXotF2ht7c%3D&md5=1270234025c37df722f1562e4943bd02CAS | open url image1

[26]  C. F. Carter, H. Lange, S. V. Ley, I. R. Baxendale, B. Wittkamp, J. G. Goode, N. L. Gaunt, Org. Process Res. Dev. 2010, 14, 393.
         | CrossRef | 1:CAS:528:DC%2BC3cXhtlCgsrk%3D&md5=ed5fa572dc66e0c8042b6e5e004ce275CAS | open url image1

[27]  S. Farquharson, W. Smith, R. M. Carangelo, C. Brouillete, Proc. SPIE 1999, 3859, 14.
         | CrossRef | 1:CAS:528:DC%2BD3cXhs1ekur8%3D&md5=b05d3d93a7f6e03f02e8f758051dd0f4CAS | open url image1

[28]  S. Mozharov, A. Nordon, D. Littlejohn, C. Wiles, P. Watts, P. Dallin, J. M. Girkin, J. Am. Chem. Soc. 2011, 133, 3601.
         | CrossRef | 1:CAS:528:DC%2BC3MXitlams7o%3D&md5=ca19a7987e710463775f3b2c1fc7cb9eCAS | open url image1

[29]  R. J. Ampiah-Bonney, A. D. Walmsley, Analyst (Lond.) 1999, 124, 1817.
         | CrossRef | 1:CAS:528:DyaK1MXnsF2ms78%3D&md5=d4b86c95b7c918084eef2df62a52ae80CAS | open url image1

[30]  A. Fiedler, M. Baranska, H. Schulz, J. Raman Spectrosc. 2011, 42, 551.
         | CrossRef | 1:CAS:528:DC%2BC3MXjsVGjtrs%3D&md5=40e5965a104237318aa1bc2a4ed12785CAS | open url image1

[31]  K. J. Laidler, J. H. Meiser, B. C. Sanctuary, Physical Chemistry 2003, 4th edn (Houghton Mifflin: Boston, MA).



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (357 KB) Export Citation Cited By (5)