ii) 4-Aminomethylpyridine-Sulfate with Chromotropism">
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Solvent-Induced Reversible Crystal-to-Amorphous Transformation Properties of Cobalt(ii) 4-Aminomethylpyridine-Sulfate with Chromotropism

Achareeya Cheansirisomboon A , Chaveng Pakawatchai B and Sujittra Youngme A C

A Materials Chemistry Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.

B Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.

C Corresponding author. Email: sujittra@kku.ac.th

Australian Journal of Chemistry 66(4) 477-484 http://dx.doi.org/10.1071/CH12433
Submitted: 21 September 2012  Accepted: 9 December 2012   Published: 25 January 2013

Abstract

The crystalline CoII coordination compound with empirical formula [Co(Hampy)2(H2O)4](SO4)2(H2O)3 (1); ampy = 4-aminomethylpyridine was obtained. The structure contains a mononuclear [Co(Hampy)2(H2O)4]4+ cation unit, two sulfate ions, and three lattice water molecules. The Co2+ cation shows an elongated octahedral geometry comprised of four oxygen atoms from water molecules at equatorial positions and two nitrogen atoms from Hampy ligands which are protonated at NH2. Each mononuclear cation unit is assembled by intermolecular hydrogen bonding and π–π stacking interactions by the coordinated and lattice water molecules, amino group, and sulfate anions to form a 3D supramolecular network. Investigations of the dynamic structural behaviour demonstrate that the title compound exhibits a solvent-induced reversible crystal-to-amorphous transformation with chromotropism when exposed to water and methanol vapour. This indicates that the dehydrated amorphous form, [Co(Hampy)2(SO4)2] 1A, may be utilised as an indicator for humidity and methanol vapour.

Graphical Abstract Image


References

[1]  E. Y. Lee, M. P. Suh, Angew. Chem. Int. Ed. 2004, 43, 2798.
         | CrossRef | 1:CAS:528:DC%2BD2cXksFertL8%3D&md5=71f9ee8338ff52e20998548e7101118eCAS | open url image1

[2]  E. Y. Lee, S. Y. Jang, M. P. Suh, J. Am. Chem. Soc. 2005, 127, 6374.
         | CrossRef | 1:CAS:528:DC%2BD2MXjtVWntrk%3D&md5=481805f515150df3e20b400b904e8196CAS | open url image1

[3]  K. Biradha, M. Fujita, Angew. Chem. Int. Ed. 2002, 41, 3392.
         | CrossRef | 1:CAS:528:DC%2BD38XnsFKntrk%3D&md5=6cc2bd3c109e63691688ab6772b2bda7CAS | open url image1

[4]  K. Biradha, Y. Hongo, M. Fujita, Angew. Chem. Int. Ed. 2002, 41, 3395.
         | CrossRef | 1:CAS:528:DC%2BD38XnsFKntrY%3D&md5=b5397082bfae0272f7c395cb2acb9f79CAS | open url image1

[5]  C. J. Kepert, M. J. Rosseinsky, Chem. Commun. 1999, 375.
         | CrossRef | 1:CAS:528:DyaK1MXhtV2hsrs%3D&md5=6fdf2171f65e5b38ec5fe5cfb0620dd3CAS | open url image1

[6]  K. Takaoka, M. Kawano, M. Tominaga, M. Fujita, Angew. Chem. Int. Ed. 2005, 44, 2151.
         | CrossRef | 1:CAS:528:DC%2BD2MXjt1CqurY%3D&md5=a4e0302ad3410b6baf3670fd87589b5dCAS | open url image1

[7]  C.-D. Wu, W. Lin, Angew. Chem. Int. Ed. 2005, 44, 1958.
         | CrossRef | 1:CAS:528:DC%2BD2MXjt12qt7g%3D&md5=1187b5f5725df2e3b3d262e7d5dd83e7CAS | open url image1

[8]  D. N. Dybtsev, H. Chun, K. Kim, Angew. Chem. Int. Ed. 2004, 43, 5033.
         | CrossRef | 1:CAS:528:DC%2BD2cXotlKrsbo%3D&md5=d6dc0c85d58b4e730fa919af50282309CAS | open url image1

[9]  N. L. Toh, M. Nagarathinam, J. J. Vittal, Angew. Chem. Int. Ed. 2005, 44, 2237.
         | CrossRef | 1:CAS:528:DC%2BD2MXjslWru70%3D&md5=ce4441388faf8e08593b8b31f8d247d5CAS | open url image1

[10]  T. H. Kim, Y. W. Shin, J. S. Kim, J. Kim, Angew. Chem. Int. Ed. 2008, 47, 685.
         | CrossRef | 1:CAS:528:DC%2BD1cXhslamtb4%3D&md5=e68dfdfb8b46769fa853622888ae39a8CAS | open url image1

[11]  J. Y. Lee, S. Y. Lee, W. Sim, K. M. Park, J. Kim, S. S. Lee, J. Am. Chem. Soc. 2008, 130, 6902.
         | CrossRef | 1:CAS:528:DC%2BD1cXlslSmsLw%3D&md5=6d86b744527ea0625e030cd0ccee8d91CAS | open url image1

[12]  C. Hu, U. Englert, Angew. Chem. Int. Ed. 2005, 44, 2281.
         | CrossRef | 1:CAS:528:DC%2BD2MXjslWqsro%3D&md5=1a0ab6b867abbba01d0ed021f7bde711CAS | open url image1

[13]  B. Rather, B. Moulton, R. D. B. Walsh, M. J. Zaworotko, Chem. Commun. 2002, 694.
         | CrossRef | 1:CAS:528:DC%2BD38XitF2ksrk%3D&md5=6fbc7ee5967f675a1aa51c2f98397555CAS | open url image1

[14]  S. Oliver, A. Kuperman, A. Lough, G. A. Ozin, Chem. Mater. 1996, 8, 2391.
         | CrossRef | 1:CAS:528:DyaK28XltV2gs7g%3D&md5=3c02afb662c2de19551e1df5e483b86aCAS | open url image1

[15]  W. Lin, O. R. Evans, R. G. Xiong, Z. Y. Wang, J. Am. Chem. Soc. 1998, 120, 13272.
         | CrossRef | 1:CAS:528:DyaK1cXns1ymsLg%3D&md5=f3b7e488e0685bd80d16e93bc1a72b86CAS | open url image1

[16]  J. H. Kim, S. M. Hubig, S. V. Lindeman, J. K. Kochi, J. Am. Chem. Soc. 2001, 123, 87.
         | CrossRef | 1:CAS:528:DC%2BD3cXos1Ckt7o%3D&md5=023371d902804b4848311b301f9a24d4CAS | open url image1

[17]  J. J. Vittal, Coord. Chem. Rev. 2007, 251, 1781.
         | CrossRef | 1:CAS:528:DC%2BD2sXmvVeltbo%3D&md5=1afded6fc0fc77138c5bed2d72627dbeCAS | open url image1

[18]  H. K. Chae, D. Y. Siberio-Perez, J. Kim, Y. Go, M. Eddaoudi, A. J. Matzger, M. O’Keeffe, O. M. Yaghi, Nature 2004, 427, 523.
         | CrossRef | 1:CAS:528:DC%2BD2cXpsFWguw%3D%3D&md5=c643641fb978abe721e1d864e8a74651CAS | open url image1

[19]  P. Sozzani, S. Bracco, A. Comotti, L. Ferretti, R. Simonutti, Angew. Chem. Int. Ed. 2005, 44, 1816.
         | CrossRef | 1:CAS:528:DC%2BD2MXislWktbg%3D&md5=f5d449ec991b48c2a7b9e7ed18e35a12CAS | open url image1

[20]  T. K. Prasad, M. V. Rajasekharan, Cryst. Growth Des. 2006, 6, 488.
         | CrossRef | 1:CAS:528:DC%2BD2MXhtFahs7rO&md5=89ef3988bc3798e8ef286f7a55c77a3aCAS | open url image1

[21]  J. Boonmak, M. Nakano, N. Chaichit, C. Pakawatchai, S. Youngme, Dalton Trans. 2010, 39, 8161.
         | CrossRef | 1:CAS:528:DC%2BC3cXhtVOhsrjI&md5=7f8e444ba8c86acd9a57d8876b04bfc7CAS | open url image1

[22]  A. Cheansirisomboon, C. Pakawatchai, S. Youngme, Dalton Trans. 2012, 41, 10698.
         | CrossRef | 1:CAS:528:DC%2BC38XhtF2jsb%2FJ&md5=d9e705ead525fb164fdd641b2e325857CAS | open url image1

[23]  (a) T. J. Prior, B. Yotnoi, A. Rujiwatra, Polyhedron 2011, 30, 259.
         | CrossRef | 1:CAS:528:DC%2BC3MXmtVChsg%3D%3D&md5=7527ec657b4ba8ff2a8a642d0bed589eCAS | open url image1
      (b) S. D. Huang, R. G. Xiong, P. H. Sotero, J. Solid State Chem. 1998, 138, 361.
         | CrossRef | open url image1
         (c) G. A. Jeffrey, An Introduction to Hydrogen Bonding 1997 (OUP: Oxford).

[24]  SAINT 4.0 Software Reference Manual 2000 (Siemens Analytical X-Ray Systems, Inc.: Madison, WI).

[25]  G. M. Sheldrick, SADABS: Program for Empirical Absorption Correction of Area Detector Data 2000 (University of Göttingen: Göttingen).

[26]  G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
         | CrossRef | open url image1

[27]  J. R. Allan, A. D. Paton, K. Turvey, H. J. Bowley, D. L. Gerrad, Inorg. Chim. Acta 1987, 134, 259.
         | CrossRef | 1:CAS:528:DyaL1cXos1yitA%3D%3D&md5=857deeed2cc4b7973ba75bb7569f0617CAS | open url image1

[28]  K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds 1997, 5th edn (John Wiley & Sons: New York, NY).

[29]  E. E. Castellano, O. E. Piro, B. S. Parajon-Costa, E. J. Baran, Z. Naturforsch. 2002, 57, 657.
         | 1:CAS:528:DC%2BD38Xls12htbY%3D&md5=747c42dcacbe61b55091e6b45e448712CAS | open url image1

[30]  B. I. Uçar, H. Karabulut, O. Pasaõglu, A. Büuyükgüngör, A. Bulut, J. Mol. Struct. 2006, 787, 38. open url image1

[31]  O. Andac, S. Guney, Y. Topcu, V. T. Yilmaz, W. T. A. Harrison, Acta Crystallogr. C 2002, 58, m17.
         | CrossRef | open url image1

[32]  Y. Çelik, E. Bozkurt, I. Uçar, B. Karabulut, J. Phys. Chem. Solids 2012, 73, 1010.
         | CrossRef | open url image1

[33]  E. Bozkurt, H. Ayaz, I. Uçar, B. Karabulut, Inorg. Chim. Acta 2012, 390, 1.
         | CrossRef | 1:CAS:528:DC%2BC38XpsFWksb4%3D&md5=7255c2cec88e24019e7617c6c97ce7afCAS | open url image1

[34]  K. Takaoka, M. Kawano, T. Hozumi, S. Ohkoshi, M. Fujita, Inorg. Chem. 2006, 45, 3976.
         | CrossRef | 1:CAS:528:DC%2BD28Xjs1ylsLc%3D&md5=da4761850eac58e4776f42a2fa0f2610CAS | open url image1

[35]  M.-L. Sun, L. Zhang, Q.-P. Lin, J. Zhang, Y.-G. Yao, Cryst. Growth Des. 2010, 10, 1464.
         | CrossRef | 1:CAS:528:DC%2BC3cXitFejsbc%3D&md5=cefd00f794cee9fb1940e19954708cd1CAS | open url image1

[36]  (a) D. Bradshaw, J. E. Warren, M. J. Rosseinsky, Science 2007, 315, 977.
         | CrossRef | 1:CAS:528:DC%2BD2sXhs1Cksrs%3D&md5=d967a13a96849904f5da7c6372f27a94CAS | open url image1
      (b) S.-J. Fu, C.-Y. Cheng, K.-J. Lin, Cryst. Growth Des. 2007, 7, 1381.
         | CrossRef | open url image1
      (c) C.-L. Chen, A. M. Goforth, M. D. Smith, C.-Y. Su, H.-C. zur Loye, Angew. Chem. Int. Ed. 2005, 44, 6673.
         | CrossRef | open url image1
      (d) L. G. Beauvais, M. P. Shores, J. R. Long, J. Am. Chem. Soc. 2000, 122, 2763.
         | CrossRef | open url image1

[37]  M. Kurmoo, Chem. Soc. Rev. 2009, 38, 1353.
         | CrossRef | 1:CAS:528:DC%2BD1MXkvVamu7s%3D&md5=773b56724455a9f00d9826c7f5f8cd49CAS | open url image1

[38]  A. N. Khlobystov, N. R. Champness, C. J. Roberts, S. J. B. Tendler, C. Thompson, M. Schroder, CrystEngComm 2002, 4, 426.
         | CrossRef | 1:CAS:528:DC%2BD38XmvFKrt70%3D&md5=d455cd8032138de471ec7aa1a5ccbcc1CAS | open url image1



Supplementary MaterialSupplementary Material 91.1 KB Export Citation