Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A Colorimetric Aptamer Biosensor Based on Gold Nanoparticles for the Ultrasensitive and Specific Detection of Tetracycline in Milk

Lan He A D , Yanfang Luo B , Wenting Zhi C , Yuangen Wu A C and Pei Zhou B E

A School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

B School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.

C Key Laboratory of Urban Agriculture (South) of Ministry of Agriculture, Shanghai 200240, China.

D Bor S. Luh Food Safety Research Center, Shanghai 200240, China.

E Corresponding author. Email: zhoupei@sjtu.edu.cn

Australian Journal of Chemistry 66(4) 485-490 http://dx.doi.org/10.1071/CH12446
Submitted: 27 September 2012  Accepted: 5 December 2012   Published: 13 March 2013

Abstract

This paper proposes a sensing strategy which employs an aptamer, unmodified gold nanoparticles (AuNP), and hexadecyltrimethylammonium bromide (CTAB) to detect tetracycline (TET) in raw milk. The method is based on the colorimetric assay of aggregating AuNP. In the absence of TET, the CTAB and aptamer form a complex which allows the aggregation of AuNP. In the presence of TET, the TET aptamer is exhausted first due to the formation of aptamer-TET complexes, which prevents assembly of the CTAB–aptamer supramolecule, causing a colour change and no aggregation of AuNP. This mechanism for the detection of TET proved to be sensitive and convenient. The colorimetric assay has a detection limit of 122 nM TET. This sensor has great potential for the sensitive, colorimetric detection of a wide range of molecular analytes.

Graphical Abstract Image


References

[1]  M. Listgarten, J. Lindhe, L. Hellden, J. Clin. Periodontol. 1978, 5, 246.
         | CrossRef | 1:STN:280:DyaE1M%2FmvVSnsw%3D%3D&md5=5977cdb12ee098e99d5f67b09299ec0cCAS | open url image1

[2]  S. Rebe Raz, M. G. E. G. Bremer, W. Haasnoot, W. Norde, Anal. Chem. 2009, 81, 7743.
         | CrossRef | 1:CAS:528:DC%2BD1MXhtVSgtL7L&md5=9335c2b0d35451bf431618c8e1abd445CAS | open url image1

[3]  X. Hu, J. Pan, Y. Hu, Y. Huo, G. Li, J. Chromatogr. A 2008, 1188, 97.
         | CrossRef | 1:CAS:528:DC%2BD1cXksVKktbY%3D&md5=9d83b1def37a1b89e7023f2cfdc31dd9CAS | open url image1

[4]  V. Samanidou, S. Nisyriou, J. Sep. Sci. 2008, 31, 2068.
         | CrossRef | 1:CAS:528:DC%2BD1cXos1equ7Y%3D&md5=810660cab2bcd3b765f36de562fbb83dCAS | open url image1

[5]  D. J. Margolis, M. Fanelli, O. Hoffstad, J. D. Lewis, Am. J. Gastroenterol. 2010, 105, 2610.
         | CrossRef | 1:CAS:528:DC%2BC3cXhsFajs7%2FM&md5=86d81faa43e82140a45834732c4825f3CAS | open url image1

[6]  M. S. Hossain, M. A. Salam, G. Rabbani, I. Kabir, R. Biswas, D. Mahalanabis, J. Health Popul. Nutr. 2011, 20, 18. open url image1

[7]  Commission of the European Communities, Establishment by the European Community of Maximum Residue Limits (MRLs) for Residues of Veterinary Medical Products in Foodstuffs of Animal Origin, the Rules Governing Medical Products in the European Community, ECSC-EEC-EAEC, Brussels, 1991.

[8]  The Code of Federal Regulations, Title 21, Part 556, Section 152, 500, and 720. US Government Printing Office, Washington, DC, 2003.

[9]  J. Li, L. Chen, X. Wang, H. Jin, L. Ding, K. Zhang, H. Zhang, Talanta 2008, 75, 1245.
         | CrossRef | 1:CAS:528:DC%2BD1cXlvVKqsro%3D&md5=e89ded78c882e5958f68dfe000b6cd24CAS | open url image1

[10]  V. Andreu, P. Vazquez-Roig, C. Blasco, Y. Picó, Anal. Bioanal. Chem. 2009, 394, 1329.
         | CrossRef | 1:CAS:528:DC%2BD1MXhslymsLk%3D&md5=7eb41e909d055ef034bc3b33090b4278CAS | open url image1

[11]  N. Rodríguez, B. D. Real, M. Cruz Ortiz, L. A. Sarabia, A. Herrero, Anal. Chim. Acta 2009, 632, 42.
         | CrossRef | open url image1

[12]  N. E. Virolainen, M. G. Pikkemaat, J. W. A. Elferink, M. T. Karp, J. Agric. Food Chem. 2008, 56, 11065.
         | CrossRef | 1:CAS:528:DC%2BD1cXhtlGku7fO&md5=3ec6059c6ffb3121e2b5b4f1d09f18c0CAS | open url image1

[13]  A. Angelikaki, S. Girousi, Chem. Anal. (Pol.) 2008, 53, 445.
         | 1:CAS:528:DC%2BD1cXos1eqs7s%3D&md5=043e9fd34e373c3bba2d7ca7c8475ae3CAS | open url image1

[14]  M. Jeon, J. Kim, K. J. Paeng, S. W. Park, I. R. Paeng, Microchem. J. 2008, 88, 26.
         | CrossRef | 1:CAS:528:DC%2BD2sXhsVCjsbjK&md5=a4872b0729287d82ce3ad235b8824c11CAS | open url image1

[15]  K. Sefah, J. A. Phillips, X. Xiong, L. Meng, D. Van Simaeys, H. Chen, J. Martin, W. Tan, Analyst 2009, 134, 1765.
         | CrossRef | 1:CAS:528:DC%2BD1MXhtVSms73I&md5=e2ae865fba678944f505a4157e33202dCAS | open url image1

[16]  J. Liu, Z. Cao, Y. Lu, Chem. Rev. 2009, 109, 1948.
         | CrossRef | 1:CAS:528:DC%2BD1MXjsFemurw%3D&md5=df0d13daf7cf46162717a1d01b6153fbCAS | open url image1

[17]  C. Tuerk, L. Gold, Science 1990, 249, 505.
         | CrossRef | 1:CAS:528:DyaK3cXlt1OltLY%3D&md5=fed0770a8963da6ec371d58ac0bd427cCAS | open url image1

[18]  A. D. Ellington, J. W. Szostak, Nature 1990, 346, 818.
         | CrossRef | 1:CAS:528:DyaK3MXitVGgsw%3D%3D&md5=2354f91c1cf9c11da62f6b30e220726dCAS | open url image1

[19]  D. L. Robertson, G. F. Joyce, Nature 1990, 344, 467.
         | CrossRef | 1:CAS:528:DyaK3cXitlWltLk%3D&md5=f20b6e2f28b77cf5a7e7cdcfa7d7a111CAS | open url image1

[20]  A. D. Keefe, S. Pai, A. Ellington, Nat. Rev. Drug Discov. 2010, 9, 537.
         | CrossRef | 1:CAS:528:DC%2BC3cXotFelsLY%3D&md5=1fee92e8777636a3fcd04b3bbbeceb86CAS | open url image1

[21]  L. Gold, N. Janjic, T. Jarvis, D. Schneider, J. J. Walker, S. K. Wilcox, D. Zichi, Cold Spring Harb. Perspect. Biol. 2012, 4, 1. open url image1

[22]  M. Mascini, I. Palchetti, S. Tombelli, Angew. Chem. Int. Ed. 2012, 51, 1316.
         | CrossRef | 1:CAS:528:DC%2BC38XitVarsA%3D%3D&md5=553ac0f94e09c526cfd3f045b20b1458CAS | open url image1

[23]  J. H. Niazi, S. J. Lee, M. B. Gu, Bioorg. Med. Chem. 2008, 16, 7245.
         | CrossRef | 1:CAS:528:DC%2BD1cXps12jtL4%3D&md5=a9ed5faa536f2ec36d26f88e242ad9f0CAS | open url image1

[24]  T. Mairal, V. Cengiz Özalp, P. Lozano Sánchez, M. Mir, I. Katakis, C. K. O’Sullivan, Anal. Bioanal. Chem. 2008, 390, 989.
         | CrossRef | 1:CAS:528:DC%2BD1cXhsFamtLo%3D&md5=4ea35f5efde3fdd7575ba09e69139465CAS | open url image1

[25]  H. J. Lee, B. C. Kim, M. K. Oh, J. Kim, Chem. Commun. 2012, 48, 5971.
         | 1:CAS:528:DC%2BC38Xnt1Khu7k%3D&md5=93e677e421857cac7adde3a1dedee46eCAS | open url image1

[26]  B. Li, H. Wei, S. Dong, Chem. Commun. 2007, 73.
         | CrossRef | open url image1

[27]  Y. Wu, S. Zhan, F. Wang, L. He, W. Zhi, P. Zhou, Chem. Commun. 2012, 48, 4459.
         | CrossRef | 1:CAS:528:DC%2BC38Xlt1Gkur4%3D&md5=46d8686aa9555eb53e957fa1d16dd0c3CAS | open url image1

[28]  L. He, W. Zhi, Y. Wu, S. Zhan, F. Wang, H. Xing, P. Zhou, Analytical Methods 2012, 4, 2266.
         | 1:CAS:528:DC%2BC38XhtFChurjP&md5=63cec5fed29c44be8d3e9c7e094df872CAS | open url image1

[29]  J. Zhang, B. Zhang, Y. Wu, S. Jia, T. Fan, Z. Zhang, C. Zhang, Analyst 2010, 135, 2706.
         | CrossRef | 1:CAS:528:DC%2BC3cXhtFOrsb%2FK&md5=55104db03457ae10fea543f3da179201CAS | open url image1

[30]  Y. J. Kim, Y. S. Kim, J. H. Niazi, M. B. Gu, Bioprocess Biosyst. Eng. 2010, 33, 31.
         | CrossRef | 1:CAS:528:DC%2BD1MXhsFyjsLrK&md5=1c31eebe8731e41cc07f08dfcacdf09bCAS | open url image1

[31]  I. Palchetti, M. Mascini, Analyst 2008, 133, 846.
         | CrossRef | 1:CAS:528:DC%2BD1cXns1art7s%3D&md5=68bd63130d24fd58ae0ecdd0a9291479CAS | open url image1

[32]  L. Li, B. Li, Y. Qi, Y. Jin, Anal. Bioanal. Chem. 2009, 393, 2051.
         | CrossRef | 1:CAS:528:DC%2BD1MXhs1Ckt7s%3D&md5=cf5f48069459fb3a1dd9d52cd3064511CAS | open url image1

[33]  Y. Wang, D. Li, W. Ren, Z. Liu, S. Dong, E. Wang, Chem. Commun. 2008, 2520.
         | CrossRef | 1:CAS:528:DC%2BD1cXmtlSjur0%3D&md5=5680123dce3e8b4549b68e80c98936ceCAS | open url image1

[34]  F. Xia, X. Zuo, R. Yang, Y. Xiao, D. Kang, A. Vallée-Bélisle, X. Gong, J. D. Yuen, B. B. Y. Hsu, A. J. Heeger, Proc. Natl. Acad. Sci. USA 2010, 107, 10837.
         | CrossRef | 1:CAS:528:DC%2BC3cXotVKqur8%3D&md5=c83f21303f9fe3886b24fdc1e46154a4CAS | open url image1

[35]  D. K. Smith, B. A. Korgel, Langmuir 2008, 24, 644.
         | CrossRef | 1:CAS:528:DC%2BD1cXjt1agsw%3D%3D&md5=2dcd10b12b45e01499bff9adbf7daf0bCAS | open url image1

[36]  P. Kannan, S. Sampath, S. A. John, J. Phys. Chem. C 2010, 114, 21114.
         | 1:CAS:528:DC%2BC3cXhsVGktbzI&md5=cff5113dc287e907b9890e8e2fd4c093CAS | open url image1

[37]  H. Storchova, R. Hrdlickova, J. Chrtek, M. Tetera, D. Fitze, J. Fehrer, Taxon 2000, 49, 79.
         | CrossRef | open url image1

[38]  M. Singh, M. Ugozzoli, M. Briones, J. Kazzaz, E. Soenawan, D. T. O’Hagan, Pharm. Res. 2003, 20, 247.
         | CrossRef | 1:CAS:528:DC%2BD3sXpslWitw%3D%3D&md5=89303752c18f53718f36e95770bff0e2CAS | open url image1

[39]  Y. Ofir, B. Samanta, V. M. Rotello, Chem. Soc. Rev. 2008, 37, 1814.
         | CrossRef | 1:CAS:528:DC%2BD1cXhtVOitbrM&md5=c03bb83cb607dee9c7397a776dadfdb6CAS | open url image1

[40]  D. Santhiya, S. Maiti, J. Phys. Chem. B 2010, 114, 7602.
         | CrossRef | 1:CAS:528:DC%2BC3cXmtVymur8%3D&md5=5350bcd8549ebcfd3aa2f92b16768195CAS | open url image1

[41]  A. González-Pérez, R. S. Dias, T. Nylander, B. Lindman, Biomacromolecules 2008, 9, 772.
         | CrossRef | open url image1

[42]  Z. Jiang, X. Liao, A. Deng, A. Liang, J. Li, H. Pan, S. Wang, Y. Huang, Anal. Chem. 2008, 80, 8681.
         | CrossRef | 1:CAS:528:DC%2BD1cXht1KiurfJ&md5=de6b7008d027712acd4c7822ea757721CAS | open url image1

[43]  Y. Wu, S. Zhan, L. Xu, W. Shi, T. Xi, X. Zhan, P. Zhou, Chem. Commun. 2011, 47, 6027.
         | 1:CAS:528:DC%2BC3MXmtVyjtbk%3D&md5=53fbb3b9d9260032993c0b615dc57e68CAS | open url image1

[44]  J. Adrian, S. Pasche, G. Voirin, D. G. Pinacho, H. Font, F. Sánchez-Baeza, M. Marco, J.M. Diserens, B. Granier, TrAC Trends in Analytical Chem. 2009, 28, 769.
         | 1:CAS:528:DC%2BD1MXmvFSisLo%3D&md5=ac24909ea261a4d30b501b520ff60b82CAS | open url image1



Supplementary MaterialSupplementary Material (398 KB) Export Citation