Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Facile Fabrication of Au–F127 Nanocolloids with Different Morphologies and their Potential Bioapplications

Qinshu Zhu A E , Chong Sun A B E , Jie Yan A , Kai Yang A , Rongjin Fu C , Chun Mao A D and Jian Shen A D
+ Author Affiliations
- Author Affiliations

A Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.

B School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

C Nanjing Institute of Supervision & Testing on Product Quality, Nanjing 210028, China.

D Corresponding authors. Email: maochun127@yahoo.cn; jshen@njnu.edu.cn

E These authors contributed equally to this work.

Australian Journal of Chemistry 66(3) 381-390 https://doi.org/10.1071/CH12482
Submitted: 22 October 2012  Accepted: 4 December 2012   Published: 23 January 2013

Abstract

Three kinds of novel facile fabrication routes to prepare Au–F127 nanocolloids with different morphologies including rambutan-like Au–F127 hybrid nanospheres, Au@F127 core–shell nanostructure, and multiple shapes of Au nanosheets are reported. The different Au–F127 nanocolloids are characterised by transmission electron microscopy, electron diffraction patterns, and UV-vis spectroscopy. The different formation mechanisms of the Au–F127 nanocolloids with different morphologies are discussed. The intrinsic properties and application potential of Au–F127 nanocolloids are determined by their size, shape, composition, and structure. A biosensor made of rambutan-like Au–F127 hybrid nanospheres exhibited a good electrocatalytic activity for the reduction of hydrogen peroxide. The Au@F127 core–shell nanoparticles exhibited good blood compatibility attributable to the surface hydrophilicity of the F127 layer. These strategies open up the exciting possibility of using F127 in synthesis of gold nanomaterials of variable morphology, and provide a promising platform for biomedical applications in future.


References

[1]  M. C. Daniel, D. Astruc, Chem. Rev. 2004, 104, 293.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvFGlur0%3D&md5=2196a7836bee443f5190feb33843af48CAS |

[2]  M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, Y. N. Xia, Chem. Soc. Rev. 2006, 35, 1084.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFSgtL%2FK&md5=3cd275dfc1ef83523aee6a4f2e74552cCAS |

[3]  C. Mao, Z. C. Xu, M. J. Yoon, Q. Wu, J. H. Kim, W. B. Zhao, J. Shen, J. Nanosci. Nanotechnol. 2009, 9, 5785.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1yrtr7E&md5=a73fd83d0dc19dedb1ac1afe7cc26ac9CAS |

[4]  C. M. Cobley, J. Y. Chen, E. C. Cho, L. V. Wang, Y. N. Xia, Chem. Soc. Rev. 2011, 40, 44.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFKju7bN&md5=3738b99aa23878b020aa3d2d47a39162CAS |

[5]  J. Peng, C. Mao, J. H. Kim, D. H. Kim, Macromol. Rapid Commun. 2009, 30, 1857.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlGisLrM&md5=343b840a037f7e8953f2504a950959cdCAS |

[6]  J. Virkutyte, R. S. Varma, Chem. Sci. 2011, 2, 837.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXks1aisrY%3D&md5=7d6539843e7d6a39c0dc5a7c65752950CAS |

[7]  V. P. Zharov, J. W. Kim, D. T. Curiel, M. Everts, Nanomedicine 2005, 1, 326.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtV2rtA%3D%3D&md5=fa35843c07c4bbf1909ea7f94ec2c610CAS |

[8]  C. Alric, J. Taleb, G. LeDuc, C. Mandon, C. Billotey, A. Le Meur-Herland, T. Brochard, F. Vocanson, M. Janier, P. Perriat, S. Roux, O. Tillement, J. Am. Chem. Soc. 2008, 130, 5908.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksFykurs%3D&md5=7bb643e20f3bcbfe98cb5a1c3f8b238fCAS |

[9]  S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, Y. Xia, Adv. Mater. 2007, 19, 3177.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht12jt7vN&md5=3d5f45c86f7dc6485a4ce3d36ba85b42CAS |

[10]  J. Y. Chen, M. X. Yang, Q. Zhang, E. C. Cho, C. M. Cobley, C. Kim, C. Glaus, L. H. V. Wang, M. J. Welch, Y. N. Xia, Adv. Funct. Mater. 2010, 20, 3684.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlehu7fK&md5=fd6b17a178a9fd2ae1ff6ff9e8af7464CAS |

[11]  Q. Xu, C. Mao, N. N. Liu, J. J. Zhu, J. Shen, Biosens. Bioelectron. 2006, 22, 768.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFensLnM&md5=5bff3032dc09edcf5249620731b7e642CAS |

[12]  Y. X. Xu, C. G. Hu, S. S. Hu, Sens. Actuators B Chem. 2010, 148, 253.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  Y. X. Xu, C. G. Hu, S. S. Hu, Sens. Actuators B Chem. 2008, 130, 816.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  H. Y. Zhao, X. X. Xu, J. X. Zhang, W. Zheng, Y. F. Zheng, Bioelectrochemistry 2010, 78, 124.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVaisrs%3D&md5=1b8afb9366367cb958881e56e8b908b2CAS |

[15]  J. J. Zhang, Y. G. Liu, L. P. Jiang, J. J. Zhu, Electrochem. Commun. 2008, 10, 355.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlOhtr0%3D&md5=18aef64dc5da27b4bc3b10c29f2994d3CAS |

[16]  W. B. Tan, Y. Zhang, J. Biomed. Mater. Res. A 2005, 75A, 56.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVaktL3E&md5=90c39b9c34c8e0ac8575e366c63f9a54CAS |

[17]  R. Huschka, J. Zuloaga, M. W. Knight, L. V. Brown, P. Nordlander, N. J. Halas, J. Am. Chem. Soc. 2011, 133, 12247.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFKnu7c%3D&md5=49a85a183342751a8dc0893ca3bbe1c0CAS |

[18]  T. Selvam, C. M. Chiang, K. M. Chi, J. Nanopart. Res. 2011, 13, 3275.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovVWgsrg%3D&md5=b1c5e5b3a7db19fbba541fed5b4f2476CAS |

[19]  M. J. Banholzer, N. Harris, J. E. Millstone, G. C. Schatz, C. A. Mirkin, J. Phys. Chem. C 2010, 114, 7521.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsFOksLo%3D&md5=586c9733d61703b9811334f9e2e40aefCAS |

[20]  M. N. Nadagouda, G. Hoag, J. Collins, R. S. Varma, Cryst. Growth Des. 2009, 9, 4979.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOitLfJ&md5=109ca0df9ef67e7f4c90335589958087CAS |

[21]  Y. G. Sun, Y. N. Xia, Science 2002, 298, 2176.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsVSkt7Y%3D&md5=cf08784428edc20f69b92e8dc65f2c14CAS |

[22]  T. K. Sau, A. N. Pal, R. Jana, Z. L. Wang, T. Pal, J. Nanopart. Res. 2001, 3, 257.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotlGmur0%3D&md5=d69e3b8b43480142433e9be7a34a2085CAS |

[23]  C. Mao, X. B. Chen, X. M. Hou, J. Shen, J. J. Zhu, W. B. Zhao, Gold Bull. 2009, 42, 215.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFymt7nN&md5=6b20814042bdf6cd9bdf8f6288cbeefbCAS |

[24]  V. Kuntić, I. Filipović, Z. Vujić, Molecules 2011, 16, 1378.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  Y. L. Ni, Y. Wang, G. H. Zhang, J. Shen, W. B. Zhao, X. H. Huang, Electrochim. Acta 2012, 69, 282.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsFSltrY%3D&md5=8d493d8e8237d71d753ada0fb00279dfCAS |

[26]  M. S. Bakshi, A. Kaura, P. Bhandari, G. Kaur, K. Torigoe, K. Esumi, J. Nanosci. Nanotechnol. 2006, 6, 1405.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsF2ksrw%3D&md5=c81431647917c171b0ddb28d1cbaaefdCAS |

[27]  P. K. Sharma, M. J. Reilly, S. K. Bhatia, N. Sakhitab, J. D. Archambault, S. R. Bhatia, Colloids Surf. B Biointerfaces 2008, 63, 229.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFahu7o%3D&md5=d3bae970c34edc0cfbd212db1c968cd4CAS |

[28]  Y. Zhu, D. Hu, M. X. Wan, L. Jiang, Y. Wei, Adv. Mater. 2007, 19, 2092.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvFClsLs%3D&md5=ffc075f84f9c6bcbb8b49de9126fa449CAS |

[29]  P. H. Qiu, C. B. Mao, J. Nanopart. Res. 2009, 11, 885.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVGkurc%3D&md5=30d9bf42d589be1def0ea60fae511b1bCAS |

[30]  S. Tajammul Hussain, M. Iqbal, M. Mazhar, J. Nanopart. Res. 2009, 11, 1383.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos1yjt74%3D&md5=cde3e1fa34966ff644ca93d55894f9e7CAS |

[31]  X. H. Ji, X. N. Song, J. Li, Y. B. Bai, W. S. Yang, X. G. Peng, J. Am. Chem. Soc. 2007, 129, 13939.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFyhu7zF&md5=b2ef31ad16337dce1cf1669314ef63b9CAS |

[32]  C. L. Nehl, J. H. Hafner, J. Mater. Chem. 2008, 18, 2415.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvFKksrc%3D&md5=bb43fabc2c871166ab2ef2842011925fCAS |

[33]  J. C. Yu, X. C. Wang, L. Wu, W. K. Ho, L. Z. Zhang, G. T. Zhou, Adv. Funct. Mater. 2004, 14, 1178.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvV2kug%3D%3D&md5=ce27b84c03387302c94134e1f71eb2f3CAS |

[34]  J. L. Zhang, B. X. Han, M. H. Liu, D. X. Liu, Z. X. Dong, J. Liu, D. Li, J. Wang, B. Z. Dong, H. Zhao, L. X. Rong, J. Phys. Chem. B 2003, 107, 3679.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit1Ojtrg%3D&md5=fd29ec412b279e6a2183728512073e36CAS |

[35]  Y. L. Luo, Mater. Lett. 2006, 60, 3361.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVGhu77J&md5=ae8772680f7c91b2fa39b9d0fe3ed8c7CAS |

[36]  H. Huang, X. Yang, Biomacromolecules 2004, 5, 2340.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntF2it7o%3D&md5=1f1719d2fa6904f9a4bf7b2a2497a909CAS |

[37]  Y. He, C. H. Fan, S. T. Lee, Nano Today 2010, 5, 282.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFKkurvL&md5=d39ff8788478bd1e180e6268c230883dCAS |

[38]  S. P. Song, Y. Qin, Y. He, Q. Huang, C. H. Fan, H. Y. Chen, Chem. Soc. Rev. 2010, 39, 4234.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlShtb3L&md5=9da3918fe8c8c186d0ce6782e39cba8bCAS |

[39]  K. Sarma, P. Vatsyayan, P. Goswami, S. D. Minteer, Biosens. Bioelectron. 2009, 24, 2313.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvVymsLc%3D&md5=8fd0d8ec04e662b43c26b39b9458a7adCAS |

[40]  H. H. Li, S. Q. Liu, Z. H. Dai, J. C. Bao, X. D. Yang, Sensors 2009, 9, 8547.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVSju7fK&md5=ce7c1735ef7e377200da6877e63740bbCAS |

[41]  Q. D. Huang, Z. Q. Lu, J. F. Rusling, Langmuir 1996, 12, 5472.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtFSjt7Y%3D&md5=763bcc2fe965ebd109405464f92363e3CAS |

[42]  K. Xu, J. R. Huang, Z. Z. Ye, Y. B. Ying, Y. B. Li, Sensors 2009, 9, 5534.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFamurs%3D&md5=f6385be9e82874f4928770700fff7109CAS |

[43]  Y. M. Li, G. C. Li, H. R. Peng, K. Z. Chen, Polym. Int. 2011, 60, 647.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFyisbs%3D&md5=3f7bba9d5b423490f0ce1b04d6f0fa7eCAS |

[44]  G. H. Zhang, N. B. Yang, Y. L. Ni, J. Shen, W. B. Zhao, X. H. Huang, Sens. Actuators B 2011, 158, 130.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovFGgur8%3D&md5=17dcdeab554ab98f512b0ba3449c6beaCAS |

[45]  S. Wei, W. Dandan, G. Ruifang, J. Kui, Electrochem. Commun. 2007, 9, 1159.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  S. F. Wang, T. Chen, Z. L. Zhang, X. C. Shen, Z. X. Lu, D. W. Pang, K. Y. Wong, Langmuir 2005, 21, 9260.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXns1ShsLc%3D&md5=86c18aa31a74dad1ebacb4f55faef3d2CAS |

[47]  S. F. Wang, T. Chen, Z. L. Zhang, D. W. Pang, K. Y. Wong, Electrochem. Commun. 2007, 9, 1709.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFCls7w%3D&md5=28d1d857c3e40a79a6dfd022c0b1a076CAS |

[48]  E. Laviron, J. Electroanal. Chem. 1979, 101, 19.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXltFCnt7k%3D&md5=5ba31576b2971b3b38e05f16ee990a88CAS |

[49]  W. Sun, D. D. Wang, G. C. Li, Z. Q. Zhai, R. J. Zhao, K. Jiao, Electrochim. Acta 2008, 53, 8217.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVOqsbrL&md5=660fd90fee73a60e48a579c8d09300c2CAS |

[50]  H. Y. Gu, A. M. Yu, H. Y. Chen, J. Electroanal. Chem. 2001, 516, 119.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXoslGnu7g%3D&md5=79ae4b3a04e1250af597c991c93592f9CAS |

[51]  M. Song, X. Feng, X. H. Lu, X. M. Wang, Electroanal. 2010, 22, 668.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFSjt7k%3D&md5=8696240a209c6254ebca37666a890f02CAS |

[52]  L. X. Wu, Z. Guo, S. Meng, W. Zhong, Q. G. Du, L. S. L. Chou, ACS Appl. Mater. Interfaces 2010, 2, 2781.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGru7fO&md5=99ffe7b965c2e35d3d9cde9f496aba48CAS |

[53]  C. Mao, C. X. Liang, Y. Q. Mao, L. Li, X. M. Hou, J. Shen, Colloids Surf. B Biointerfaces 2009, 74, 362.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtF2htbzN&md5=d459d34dc75ce9f655e1b8c3460d4637CAS |

[54]  B. D. Ratner, Biomaterials 2007, 28, 5144.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFalsr3L&md5=e7c92be0c8d09bf093399ff49f6609e5CAS |

[55]  J. P. Singhal, A. R. Ray, Biomaterials 2002, 23, 1139.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1WqtL4%3D&md5=ad370df1d1bf914ece6462b1c2fb4dffCAS |

[56]  P. V. Asharani, S. Sethu, S. Vadukumpully, S. P. Zhong, C. T. Lim, M. Prakash Hande, S. Valiyaveettil, Adv. Funct. Mater. 2010, 20, 1233.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltV2js7s%3D&md5=b8ed88156f8c6a9fd44225dc423861b6CAS |

[57]  H. Hu, X. B. Wang, S. L. Xu, W. T. Yang, F. J. Xu, J. Shen, C. Mao, J. Mater. Chem. 2012, 22, 15362.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFKqtLg%3D&md5=4c52d188f52c5f8353308ab4d4758c4fCAS |

[58]  H. L. Pereira, E. Ayres, P. S. Patricio, A. M. Goes, V. S. Gomide, E. P. Junior, R. L. Orefice, Acta Biomater. 2010, 6, 3056.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpslOrtrs%3D&md5=e455217ce4c4fb8008ba356babcfeca8CAS |

[59]  B. Wiley, Y. G. Sun, J. Y. Chen, H. Cang, Z. Y. Li, X. D. Li, Y. N. Xia, MRS Bull. 2005, 30, 356.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlt1KrtL8%3D&md5=2886d7e852b6fb03d414c34c0bf87774CAS |

[60]  M. S. Aw, S. Simovic, J. Addai-Mensah, D. Losic, J. Mater. Chem. 2011, 21, 7082.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsV2gtLg%3D&md5=59189b662cc04f467773d95cf123d9b4CAS |

[61]  S. T. Reddy, A. J. Van Der Vlies, E. Simeoni, V. Angeli, G. J. Randolph, C. P. O’Neil, L. K. Lee, M. A. Swartz, J. A. Hubbell, Nat. Biotechnol. 2007, 25, 1159.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFagt7rK&md5=4cd738f36693228da4da95461c06e905CAS |