Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Polyguanidine as a Highly Efficient and Reusable Catalyst for Knoevenagel Condensation Reactions in Water

Xian-Liang Zhao A C , Ke-Fang Yang B C , Xuan-Gan Liu A , Chun-Lin Ye A , Li-Wen Xu B and Guo-Qiao Lai B

A School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.

B Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 310012, China.

C Corresponding authors. Email: xlzhao@iccas.ac.cn; kfyang@iccas.ac.cn

Australian Journal of Chemistry 66(4) 500-504 http://dx.doi.org/10.1071/CH12507
Submitted: 15 November 2012  Accepted: 12 December 2012   Published: 24 January 2013

Abstract

Polyguanidine is used as a novel and highly efficient catalyst in the Knoevenagel reaction of aldehydes with active methylene compounds in water to afford substituted electrophilic alkenes. This method is applicable for a wide range of aldehydes including aromatic and heterocyclic substrates. The polyguanidine catalyst can be recovered by simple filtration and reused many times for the aqueous Knoevenagel reaction without loss of activity.

Graphical Abstract Image


References

[1]  (a) E. Knoevenagel, Ber. Dtsch. Chem. Ges. 1898, 31, 2585.
         | CrossRef | 1:CAS:528:DyaD28XpsFyktA%3D%3D&md5=ab10a1b7ce11e17cd9a3e1068a532aecCAS | open url image1
      (b) G. Jones, Org. React. 1967, 15, 204. open url image1
      (c) L. F. Tietze, Chem. Rev. 1996, 96, 115.
         | CrossRef | open url image1
         (d) L. F. Tietze, U. Beifuss, in Comprehensive Organic Synthesis (Eds B. M. Trost, I. Fleming, C. H. Heathcock) 1991, Vol. 2, pp. 341–392 (Pergamon Press: Oxford).
      (e) F. Bigi, L. Chesini, R. Maggi, G. Sartori, J. Org. Chem. 1999, 64, 1033.
         | CrossRef | open url image1
      (f) N. Yu, J. M. Aramini, M. W. Germann, Z. Huang, Tetrahedron Lett. 2000, 41, 6993.
         | CrossRef | open url image1

[2]  G. Cardillo, S. Fabbroni, L. Gentilucci, M. Gianotti, A. Tolomelli, Synth. Commun. 2003, 33, 1587.
         | CrossRef | 1:CAS:528:DC%2BD3sXjslyjsL0%3D&md5=09a795d17f158491951c857d58f2cfd7CAS | open url image1

[3]  W. Lehnert, Tetrahedron Lett. 1970, 11, 4723.
         | CrossRef | open url image1

[4]  F. Delgado, J. Tamariz, G. Zepeda, M. Landa, R. Miranda, J. Garcia, Synth. Commun. 1995, 25, 753.
         | CrossRef | 1:CAS:528:DyaK2MXjvVGjtbY%3D&md5=83e9c565e2428811685ae2905e1ac9ceCAS | open url image1

[5]  F. Texier-Boullet, A. Foucaud, Tetrahedron Lett. 1982, 23, 4927.
         | CrossRef | 1:CAS:528:DyaL3sXhslyks7Y%3D&md5=58558cc13cdf2dfcb9dad5ea576c1090CAS | open url image1

[6]  Y. V. Subba Rao, D. E. De Vos, P. A. Jacobs, Angew. Chem. Int. Ed. 1977, 36, 2661. open url image1

[7]  (a) T. I. Reddy, R. S. Varma, Tetrahedron Lett. 1997, 38, 1721.
         | CrossRef | 1:CAS:528:DyaK2sXhvVOhu70%3D&md5=4d1d6447d674ffed93871739e6e7ada5CAS | open url image1
      (b) Q. L. Wang, Y. D. Ma, B. Zuo, Synth. Commun. 1997, 27, 4107.
         | CrossRef | open url image1

[8]  (a) C. Su, Z.-C. Chen, Q. G. Zheng, Synthesis 2003, 555.
         | 1:CAS:528:DC%2BD3sXisVChtrs%3D&md5=599629bb254464c7ddc342bd9c872659CAS | open url image1
      (b) J. R. Harjani, S. J. Nara, M. M. Salunkhe, Tetrahedron Lett. 2002, 43, 1127.
         | CrossRef | open url image1
      (c) D. W. Morrison, D. C. Forbes, J. H. Davis, Tetrahedron Lett. 2001, 42, 6053.
         | CrossRef | open url image1
      (d) F. A. Khan, J. Dash, R. Satapathy, S. K. Upadhyay, Tetrahedron Lett. 2004, 45, 3055.
         | CrossRef | open url image1
      (e) B. C. Ranu, R. Jana, Eur. J. Org. Chem. 2006, 3767.
         | CrossRef | open url image1
      (f) Y. O. Sharma, M. S. Degani, Green Chem. 2009, 11, 526.
         | CrossRef | open url image1
      (g) D. Z. Xu, Y. J. Liu, S. Shi, Y. M. Wang, Green Chem. 2010, 12, 514.
         | CrossRef | open url image1

[9]  A. Coelho, A. Crespo, F. Fernandez, P. Biagini, A. Stefanachi, E. Sotelo, Comb. Chem. High T. Scr. 2008, 11, 843.
         | CrossRef | 1:CAS:528:DC%2BD1cXhsVSitrjN&md5=f021b2a1afbc4ff70b8e1bfcc9452c23CAS | open url image1

[10]  B. Tamami, A. Fadavi, Catal. Commun. 2005, 6, 747.
         | CrossRef | 1:CAS:528:DC%2BD2MXhtFWqt7jE&md5=862fb82c377f539dabd8cfdc5f1f4fa4CAS | open url image1

[11]  P. Anastas, J. C. Warner, Green Chemistry: Theory and Practice 1998 (Oxford University Press: Oxford).

[12]  Superbases for Organic Synthesis: Guanidines, Amidines and Phosphazenes and Related Organocatalysts (Ed. T. Ishikawa) 2009 (Wiley-VCH: Weinheim).

[13]  (a) C.-J. Li, L. Chen, Chem. Soc. Rev. 2006, 35, 68.
         | CrossRef | open url image1
      (b) D. Dallinger, C. O. Kappe, Chem. Rev. 2007, 107, 2563.
         | CrossRef | open url image1
      (c) V. Polshettiwar, R. S. Varma, J. Org. Chem. 2007, 72, 7420.
         | CrossRef | open url image1

[14]     (a) C. J. Li, T. H. Chan, Organic Reactions in Aqueous Media 1997 (John Wiley: New York, NY).
         (b) Organic Synthesis in Water (Ed. P. A. Grieco) 1998 (Thomson Science: Glasgow)
      (c) U. M. Lindstrom, Chem. Rev. 2002, 102, 2751.
         | CrossRef | open url image1
      (d) C. J. Li, Chem. Rev. 2005, 105, 3095.
         | CrossRef | open url image1
      (e) C. J. Li, Chem. Rev. 1993, 93, 2023.
         | CrossRef | open url image1
      (f) A. Chanda, V. V. Fokin, Chem. Rev. 2009, 109, 725.
         | CrossRef | open url image1
      (g) R. N. Butler, A. G. Coyne, Chem. Rev. 2010, 110, 6302.
         | CrossRef | open url image1

[15]  K. Sugino, K. Shirai, R. Kitawaki, J. Org. Chem. 1961, 26, 4122.
         | CrossRef | 1:CAS:528:DyaF38Xlt1yqtg%3D%3D&md5=46de5218818dfb27e9a28590ccc10436CAS | open url image1



Supplementary MaterialSupplementary Material (6 MB) Export Citation