Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science

Description of Bond Pseudorotation, Bond Pseudolibration, and Ring Pseudoinversion Processes Caused by the Pseudo-Jahn–Teller Effect: Fluoro Derivatives of the Cyclopropane Radical Cation

Wenli Zou A and Dieter Cremer A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas 75275-0314, USA.

B Corresponding author. Email:

Australian Journal of Chemistry 67(3) 435-443
Submitted: 11 September 2013  Accepted: 16 October 2013   Published: 28 November 2013


Curvilinear coordinates are used to describe the molecular geometry and the pseudo-Jahn–Teller surface of F-substituted cyclopropane radical cations using the equation-of-motion coupled cluster EOMIP-CCSD/cc-pVTZ approach. The monofluoro derivative 2 undergoes bond pseudolibration (incomplete bond pseudorotation) between two symmetry-equivalent biradicaloid forms separated by a barrier of 2.2 kcal mol–1 (1 kcal mol–1 = 4.186 kJ mol–1) at low temperature. Bond pseudorotation and ring pseudoinversion have barriers of 12.1 and 16.5 kcal mol–1 respectively. The relative energies of 2 are affected by the distribution of the positive charge in the C3 ring and the formation of a CF bond with partial π character. There is a change of the CF bond length from 1.285 to 1.338 Å along the bond pseudorotation path. The changes of the CF bond outweigh the deformation effects of the C3 ring; however, both are a result of the pseudo-Jahn–Teller effect according to an (A′ + A′′) (a′ + a′′) interaction. For the pentafluoro derivative 3 of the cyclopropane radical cation, bond pseudorotation has a barrier of 16.3 kcal mol–1 whereas ring pseudoinversion is hindered by a barrier of 21.7 kcal mol–1. Radical cation 3 is the first example of a trimethylene radical cation.


[1]  A. D. Liehr, J. Phys. Chem. 1963, 67, 389.
         | CrossRef | 1:CAS:528:DyaF3sXjs1amtA%3D%3D&md5=369767dd7b54b29769fdf123b85e3fcdCAS |

[2]  A. D. Liehr, J. Phys. Chem. 1963, 67, 472.

[3]  I. B. Bersuker, The Jahn–Teller Effect 2006 (Cambridge University Press: Cambridge, UK).

[4]  I. B. Bersuker, Chem. Rev. 2013, 113, 1351.
         | CrossRef | 1:CAS:528:DC%2BC3sXms1yisg%3D%3D&md5=733ee3c79912132bbe5cccf50c998e57CAS | 23301718PubMed |

[5]  D. Cremer, E. Kraka, K. J. Szabo, in The Chemistry of Functional Groups, The Chemistry of the Cyclopropyl Group (Ed. Z. Rappoport) 1995, Vol. 2, p. 43 (John Wiley: New York).

[6]  W. Zou, D. Izotov, D. Cremer, J. Phys. Chem. 2011, 115, 8731.
         | CrossRef | 1:CAS:528:DC%2BC3MXpt1Wmsrk%3D&md5=8bb7bdbaab1914bc8536e28c1fcac244CAS |

[7]  W. Zou, M. Filatov, D. Cremer, Int. J. Quantum Chem. 2012, 112, 3277.
         | CrossRef | 1:CAS:528:DC%2BC38XmtFantbs%3D&md5=5700d27cb71c584d98556939ec49e4c5CAS |

[8]  D. Cremer, D. Izotov, W. Zou, E. Kraka, RING, a Coordinate Transformation Program 2011 (Southern Methodist University: Dallas, TX).

[9]  E. Kraka, M. Filatov, W. Zou, J. Gräfenstein, D. Izotov, J. Gauss, Y. He, A. Wu, vs Polo, L. Olsson, Z. Konkoli, Z. He, D. Cremer, COLOGNE2013 2013 (Southern Methodist University: Dallas, TX).

[10]  A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
         | CrossRef | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=f6cf3fb1eb0aa0bd90e09e70f7fe63aeCAS |

[11]  P. J. Stephens, F. J. Devlin, C. F. Chablowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.
         | CrossRef | 1:CAS:528:DyaK2cXmvVSitbY%3D&md5=e1e5e9babf6e7231adf55e499646050fCAS |

[12]  T. H. Dunning, J. Chem. Phys. 1989, 90, 1007.
         | CrossRef | 1:CAS:528:DyaL1MXksVGmtrk%3D&md5=d4e9cc0e43c2e0f1a0ea5fbf96cf32b6CAS |

[13]  K. Raghavachari, G. W. Trucks, J. A. Pople, M. Head-Gordon, Chem. Phys. Lett. 1989, 157, 479.
         | CrossRef | 1:CAS:528:DyaL1MXlsVSkt7s%3D&md5=31c3525050584429f9c0926524510c1fCAS |

[14]  P. G. Szalay, R. J. Bartlett, Chem. Phys. Lett. 1993, 214, 481.
         | CrossRef | 1:CAS:528:DyaK3sXmsl2ju7o%3D&md5=ba22d42df8cc680dd25340b88396f471CAS |

[15]  M. Nooijen, J. G. Snijders, Int. J. Quantum Chem. Quantum Chem. Symp. 1992, 26, 55.
         | 1:CAS:528:DyaK3sXoslOlsA%3D%3D&md5=21a786d294f7cd842aa07d13f4d69d42CAS |

[16]  M. Nooijen, J. G. Snijders, Int. J. Quantum Chem. 1993, 48, 15.
         | CrossRef | 1:CAS:528:DyaK3sXmtFWjt7o%3D&md5=658f32f981be2a7559c217045ecd6fffCAS |

[17]  J. F. Stanton, J. Gauss, J. Chem. Phys. 1994, 101, 8938.
         | CrossRef | 1:CAS:528:DyaK2MXjt1yitL8%3D&md5=e051310981b315ea5e74aa01a07a601aCAS |

[18]  J. F. Stanton, J. Gauss, M. E. Harding, P. G. Szalay, with contributions from A. A. Auer, R. J. Bartlett, U. Benedikt, C. Berger, D. E. Bernholdt, Y. J. Bomble, L. Cheng, O. Christiansen, M. Heckert, O. Heun, C. Huber, T.-C. Jagau, D. Jonsson, J. Jusélius, K. Klein, W. J. Lauderdale, D. A. Matthews, T. Metzroth, L. A. Mück, D. P. O′Neill, D. R. Price, E. Prochnow, C. Puzzarini, K. Ruud, F. Schiffmann, W. Schwalbach, S. Stopkowicz, A. Tajti, J. Vázquez, F. Wang, J. D. Watts, CFOUR, a Quantum Chemical Program Package 2010 (J. F. Stanton: Austin, TX). Available at (accessed 14 November 2013).

[19]  H. J. Werner, P. J. Knowles, G. Kniza, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O′Neill, P. Palmieri, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, A. Wolf, MOLPRO, Version 2010.1, a Package of Ab Initio Programs 2010 (H.-J. Werner: Stuttgart). Available at (accessed 14 November 2013).

[20]  E. Kraka, D. Cremer, ChemPhysChem 2009, 10, 686.
         | CrossRef | 1:CAS:528:DC%2BD1MXjvVSrsro%3D&md5=d6f7b75f50411cb1f21f28dc901c3cc1CAS | 19152353PubMed |

[21]  A. Wu, D. Cremer, J. Phys. Chem. A 2003, 107, 1797.
         | CrossRef | 1:CAS:528:DC%2BD3sXhsVyns74%3D&md5=c543d2d59a4ffbea734b0ac0a2322606CAS |

Rent Article (via Deepdyve) Export Citation Cited By (4)