Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW

Recent Studies on Flash Vacuum Thermolysis in Tandem with UV-Photoelectron Spectroscopy and Quantum Calculations*

Anna Chrostowska A C and Stanisław Leśniak B
+ Author Affiliations
- Author Affiliations

A Université de Pau et des Pays de l’Adour, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux UMR CNRS 5254, 64000 Pau, France.

B Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403, Łódź, Poland.

C Corresponding author. Email: anna.chrostowska@univ-pau.fr




Professor Anna Chrostowska (Senio – married name) obtained her Ph.D. degree in chemistry in 1986 at the Warsaw University of Technology (Poland) with Professor M. Makosza. She started her academic career as Assistant Professor, at the Agriculture University of Warsaw in 1984. In 1991, she moved to the University of Pau in France as a post-doctoral fellow for two years. After five years as a temporary researcher and teacher, she obtained the position of Assistant Professor in 1998 and was promoted to Professor of Organic Chemistry at the University of Pau in 2002. Professor Chrostowska’s research is centred on experimental and theoretical studies of the electronic structure and reactivity of organic and organometallic species in the gas phase.



Stanisław Leśniak is a full professor at Univeristy of Łódź (Poland). He obtained his Ph.D. in 1983 and D.Sc. in 1996 at the same university. He was a research fellow at the University Claude Bernard Lyon1 (in the group of Professor A. Laurent) in 1984–1985 and 1991–1992. He lectured at the University C. B. Lyon1 in 1987–1988, where he was employed as a CNRS researcher in 2001–2002. He was appointed to the post of Visiting Professor at Université de Pau et des Pays de l’Adour in 2005 and 2009 in the group of Professor Anna Chrostowska. His research interests are in thermolysis in gas phases, small heterocyclic molecules, and asymmetric synthesis.

Australian Journal of Chemistry 67(9) 1166-1173 https://doi.org/10.1071/CH14105
Submitted: 28 February 2014  Accepted: 9 April 2014   Published: 1 May 2014

Abstract

Flash vacuum thermolysis (FVT) is a particular method that allows the synthesis of stable compounds or the generation of short-lived species. Its coupling with spectroscopic characterisation provides very useful tools for mechanistic investigations. One of the most efficient and especially well suited techniques for this purpose is ultraviolet–photoelectron spectroscopy (UV-PES), which in tandem with FVT provides the ionisation energies of in situ formed molecules in the gas phase. The experimental data thus obtained in real-time are supported by quantum chemical calculations for consistency of the assignments of PES spectra and constitute fundamental information about electronic structure and bonding. The FVT/UV-PES technique has been known for more than 40 years, but one advantage in the present age is the greater confidence in electronic structure computations for predicting ionisation energies, thus providing the necessary tool for unambiguous interpretation of experimental data. This mini-review aims to give some representative, original examples, chosen from a French–Polish collaboration that illustrates the efficiency and wide applicability of the FVT/UV-PES tandem methodology. The selected examples on the FVT of thione and imine derivatives will be presented.


References

[1]  H. Goldwhite, ‘Short summary of the career of the German organic chemist, Herman Kolbe’, New Haven Section, American Chemical Society Bulletin 20 (3), September 2003.

[2]  R. F. C. Brown, Pyrolytic Methods in Organic Chemistry 1980 (Academic Press: New York, NY).

[3]  T. Drewnowski, A. Chrostowska, S. Leśniak, A. Dargelos, S. Khayar, Helv. Chim. Acta 2008, 91, 766.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVWgs7k%3D&md5=e65d94c7a10b1b37994f2d78619ae0e2CAS |

[4]  S. Scheithauer, R. Mayer, Thio- and Dithiocarboxylic Acids and their Derivatives 1979, Topics in Sulfur Chemistry (Ed. A. Senning), Vol. 4 (Georg Thieme: Stuttgart).

[5]  B. Solouki, P. Rosmus, H. Bock, J. Am. Chem. Soc. 1976, 98, 6054.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXkslCi&md5=ed71991c187696196a3a60b84fce6520CAS |

[6]  R. Schulz, A. Schweig, Tetrahedron Lett. 1979, 20, 59.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  T. Drewnowski, S. Leśniak, A. Chrostowska, A. Dargelos, S. Khayar, Phosphorus Sulfur 2009, 184, 1269.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFektr0%3D&md5=3b87a681832229cb459344bb791cac62CAS |

[8]  R. C.-Y. Liu, J. Lusztyk, M. A. McAllister, T. T. Tidwell, B. D. Wagner, J. Am. Chem. Soc. 1998, 120, 6247.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjvFyrsrk%3D&md5=f636cfe82cde420523d94f374f22f39bCAS |

[9]  A. Chrostowska, A. Dargelos, A. Graciaa, S. Khayar, S. Lesniak, R. B. Nazarski, T. X. M. Nguyen, M. Maciejczyk, M. Rachwalski, Tetrahedron 2009, 65, 9322.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Gnu73K&md5=8f0e21a4f621fa51a89ea10517567acdCAS |

[10]  S. Leśniak, A. Chrostowska, D. Kuc, M. Maciejczyk, S. Khayar, R. B. Nazarski, Ł. Urbaniak, Tetrahedron 2009, 65, 10581.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  (a) J. Boyer, J. Kooi, J. Am. Chem. Soc. 1976, 98, 1099.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xht1Wjur8%3D&md5=6882d1efa8c866ec0d43af1fc917bd40CAS |
      (b) J. P. Ferris, P. Joshi, E. H. Edelson, J. G. Lawles, J. Mol. Evol. 1978, 11, 293.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. P. Ferris, W. J. Hagan, Tetrahedron 1984, 40, 1093.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) D. T. Amos, A. R. Renslo, R. L. Dankeiser, J. Am. Chem. Soc. 2003, 125, 4970.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) K. M. Maloney, R. L. Danheiser, Org. Lett. 2005, 7, 3115.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  (a) R. E. Stratmann, G. E. Scuseria, M. J. Frisch, J. Chem. Phys. 1998, 109, 8218.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvFygsLs%3D&md5=68eef2f884ffd291727db8d96d408d39CAS |
      (b) M. E. Casida, C. Jamorski, K. C. Casida, D. R. Salahub, J. Chem. Phys. 1998, 108, 4439.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) A. D. Becke, Phys. Rev. 1988, 38, 3098.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtlOhsLo%3D&md5=89a4d6eea189a0acadf44cab2961b4a3CAS |
      (b) A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. Lee, W. Yang, R. G. Parr, Phys. Rev. 1988, 37, 785.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  (a) W. von Niessen, J. Schirmer, L. S. Cederbaum, Comput. Phys. Rep. 1984, 1, 57.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXktFagsLw%3D&md5=5b7359e568e7e6c4642596b91e0649b8CAS |
      (b) J. V. Ortiz, J. Chem. Phys. 1988, 89, 6348.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  J. B. Peel, G. D. Willett, J. Chem. Soc., Faraday Trans. 1975, 71, 1799.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXmtVGns7w%3D&md5=4f1ce35d19ab8c3f34c8d180b3b53e14CAS |

[16]  R. A. Evans, S. Lacombe, M. Simon, G. Pfister-Guillouzo, C. Wentrup, J. Phys. Chem. 1992, 96, 4801.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xis1Crs7c%3D&md5=1ef595e8c7880b317a70253ef7e08e3cCAS |

[17]  K. Kimura, S. Katsumata, Y. Achiba, T. Yamazaki, S. Iwata, Handbook of HeI Photoelectron Spectra of Fundamental Organic Molecules 1981 (Halsted Press: New York, NY).

[18]  A. Chrostowska, T. X. M. Nguyen, A. Dargelos, S. Khayar, A. Graciaa, J.-C. Guillemin, J. Phys. Chem. A 2009, 113, 2387.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitFyltro%3D&md5=e0916c7fd0e2babdef6aadc0d2bdac63CAS | 19231827PubMed |

[19]  S. Leśniak, B. Pasternak, K. Justyna, T. Y. Vu, T. K. X. Huynh, S. Khayar, A. Dargelos, A. Chrostowska, Tetrahedron 2013, 69, 722.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  T. Y. Vu, A. Chrostowska, T. K. X. Huynh, S. Khayar, A. Dargelos, K. Justyna, B. Pasternak, S. Leśniak, C. Wentrup, Chem. – Eur. J. 2013, 19, 14983.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Srt7vM&md5=7073bdb371eb232fa9e2b54eac1b4871CAS | 24108670PubMed |

[21]  (a) V. Metail, S. Joanteguy, A. Chrostowska-Senio, G. Pfister-Guillouzo, A. Systermans, J. L. Ripoll, Inorg. Chem. 1997, 36, 1482.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitVOls74%3D&md5=db8a207ea61aed6bc94595c9eb02dd3eCAS | 11669729PubMed |
      (b) V. Lefèvre, J. L. Ripoll, Y. Dat, S. Joanteguy, V. Metail, A. Chrostowska-Senio, G. Pfister-Guillouzo, Organometallics 1997, 16, 1635.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  J. A. Sell, A. Kuppermann, Chem. Phys. Lett. 1979, 61, 355.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhslOkt7k%3D&md5=8ffa17de641a2235c82b21a2cdbb1f82CAS |

[23]  F. Kajfez, L. Klasinc, V. Sunjic, J. Heterocycl. Chem. 1979, 16, 529.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  S. El Khadem, J. Kawai, D. L. Swartz, Heterocycles 1989, 28, 239.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXkslOqsLw%3D&md5=b2f7290639db7bd0b61f298e029f2feaCAS |