Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Density Functional Computations on 6-Aminouracil: Effect of Amino Group in the 6th Position on the Watson–Crick Base Pair Uridine–Adenosine

M. Alcolea Palafox A D and V. K. Rastogi B C D
+ Author Affiliations
- Author Affiliations

A Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, 1430 Ås, Norway.

B Internet Lab, R.D. Foundation Group of Institutions, NH-58, Kadrabad, Modinagar (Ghaziabad), India.

C Indian Spectroscopy Society, KC 68/1, Old Kavinagar, Ghaziabad-201 002, India.

D Corresponding authors: alcolea@ucm.es; v_krastogi@rediffmail.com

Australian Journal of Chemistry 69(8) 881-889 https://doi.org/10.1071/CH15793
Submitted: 2 July 2015  Accepted: 22 February 2016   Published: 29 March 2016

Abstract

The predicted infrared and Raman spectra of 6-aminouracil in the solid state by density functional theory methods were analyzed and compared with the experimental spectra. The effect of amino substitution in the sixth position of uridine on the stability of the Watson–Crick (WC) base pairs with deoxyadenosine was evaluated. Different WC pairs of 5-aminouridine, 6-aminouridine, and uridine with deoxyadenosine were simulated, and the counterpoise-corrected interaction energies were determined. 6-Aminouridine produces a stronger WC pair than that involving uridine, and its high dipole moment facilitates interaction with water molecules.


References

[1]  C. Bayrak, J. Biol. Chem. 2012, 40, 419.

[2]  S. Aruna, G. Shanmugam, Indian J. Chem. 1986, 25A, 256.
         | 1:CAS:528:DyaL28XktFyhs7w%3D&md5=70c9cb82e87c405eeb8cc36fe5dad858CAS |

[3]  V. Gerhardt, M. Bolte, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2013, 69, 1402.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslWlsrfK&md5=cfde576d5f1a17ccae3d1880b31aff99CAS |

[4]  G. Paragi, E. Szájli, F. Bogár, L. Kovács, C. F. Guerra, F. M. Bickelhaupt, New J. Chem. 2008, 32, 1981.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlaqsbfF&md5=66f1522b2ff0f7580d04c407ff1c56c7CAS |

[5]  M. A. V. Ribeiro da Silva, L. M. P. F. Amaral, P. Szterner, J. Chem. Thermodyn. 2011, 43, 1763.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovFaqsbk%3D&md5=b1b46e4a588dffb472d0b9ce232843d9CAS |

[6]  C. E. Müller, Tetrahedron Lett. 1991, 32, 6539.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  A. A. Mustafa, A. A. Alhaider, A. A. Hijazi, Pharm. Res. 1989, 6, 394.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXkvV2ktbg%3D&md5=016342e62309254fe350dcd25b741d97CAS | 2748529PubMed |

[8]  I. Bernier, J. Henichart, V. Warin, C. Trentesaux, J. C. Jardillier, J. Med. Chem. 1985, 28, 497.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXht1Gitbg%3D&md5=a4f622269344629fc49e900033c2b8afCAS |

[9]  P. G. Kjellin, C. G. Persson, Eur. Patent 10531 1980.

[10]  E. Chmiel-Szukiewicz, J. Appl. Polym. Sci. 2006, 100, 715.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVOltLk%3D&md5=0baca104927c33c08de2ebb8d61e0b4aCAS |

[11]  P. M. Tarantino, P. M. Tarantino, J. Med. Chem. 1999, 42, 2035.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXivVarsbg%3D&md5=9a048bd29c15b77e6536ed2512185e03CAS | 10354411PubMed |

[12]  P. Langen, G. Etzold, D. Bärwolff, B. Preussel, Biochem. Pharmacol. 1967, 16, 1833.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXkvFOiu7s%3D&md5=ad3c9a3e5416efad8e79e0fd14edfd84CAS | 6053224PubMed |

[13]  C. D. Mol, A. S. Arvai, G. Slupphaug, B. Kavli, I. Alseth, H. E. Krokan, J. Tainer, Cell 1995, 80, 869.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkslOmtbs%3D&md5=955c9ec7972c27e15093eefcd6e6e149CAS | 7697717PubMed |

[14]  D. Dobritzsch, G. Scheider, K. Schnackeerz, Y. Lingvist, EMBO J. 2001, 20, 650.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsVyhsbY%3D&md5=4b40aca77091d4bfcc29ee7ff4d1959bCAS | 11179210PubMed |

[15]  (a) N. R. Jena, V. Gaur, P. C. Mishra, Phys. Chem. Chem. Phys. 2015, 17, 18111.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVSqt7%2FK&md5=d6b7be9d935435843ea2eaaa74737559CAS | 26099851PubMed |
      (b) N. R. Jena, M. Bansal, Phys. Biol. 2011, 8, 046007.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) P. Sharma, A. Mitra, S. Sharma, H. Singh, D. Bhattacharyya, J. Biomol. Struct. Dyn. 2008, 25, 709.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. Šponer, J. Leszczynski, P. Hobza, J. Biomol. Struct. Dyn. 1996, 14, 117.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) O. O. Brovarets, D. M. Hovorun, J. Biomol. Struct. Dyn. 2014, 32, 127.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) O. O. Brovarets, D. M. Hovorun, J. Biomol. Struct. Dyn. 2013, 31, 913.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  W. J. Hehre, L. Radom, P. R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory 1986 (Wiley & Sons: New York, NY).

[17]  J. M. Seminario, P. Politzer, in Modern Density Functional Theory: A Tool for Chemistry (Eds J. M. Seminario, P. Politzer) 1995, Vol. 2 (Elsevier: Amsterdam).

[18]  (a) A. D. Becke, J. Chem. Phys. 1992, 97, 9173.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmslamsw%3D%3D&md5=1e1f4f033a920dde129be1a4752aa7f5CAS |
      (b) A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=1446c2427b0599ea3e79a7334c6afa9cCAS |

[20]  M. Alcolea Palafox, Int. J. Quantum Chem. 2000, 77, 661.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  Y. Zhao, D. G. Truhlar, J. Chem. Phys. 2006, 125, 194101.
         | Crossref | GoogleScholarGoogle Scholar | 17129083PubMed |

[22]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01 2009 (Gaussian, Inc.: Wallingford, CT).

[23]  V. Arjunan, S. Senthilkumari, P. Ravindran, S. Mohan, J. Mol. Struct. 2014, 1064, 15.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXksFyksLY%3D&md5=e25298cf46c8925b8e05ca910d10a6caCAS |

[24]  S. Ortiz, M. Alcolea Palafox, V. K. Rastogi, T. Akitsu, I. Hubert Joe, S. Kumar, Spectrochim. Acta, Part A 2013, 110, 404.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVGjtr8%3D&md5=df36d6dea742455d8a11dfdd9e1e7b2bCAS |

[25]  V. Arjunan, S. Thillai Govindaraja, S. Subramanian, S. Mohan, J. Mol. Struct. 2013, 1037, 73.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjs1Cgsro%3D&md5=e5bea2698e968b62b81fa9677b97fc18CAS |

[26]  D. Kattan, M. Alcolea Palafox, S. Kumar, D. Manimaran, H. Joe, V. K. Rastogi, Spectrochim. Acta, Part A 2014, 123, 89.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXislKnt7c%3D&md5=325ec0931f49967a9feaa252674e821aCAS |

[27]  (a) M. Alcolea Palafox, P. Posada-Moreno, A. L. Villarino-Marín, C. Martinez-Rincon, I. Ortuño-Soriano, I. Zaragoza-García, J. Comput.-Aided Mol. Des. 2011, 25, 145.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVeqtLc%3D&md5=7849f12680af9601b9e14959f438662cCAS | 21181429PubMed |
      (b) T. Zhou, D. Huang, A. Caflisch, Curr. Top. Med. Chem. 2010, 10, 33.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. P. Gleeson, D. Gleeson, J. Chem. Inf. Model. 2009, 49, 670.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) N. R. Jena, P. C. Mishra, J. Mol. Model. 2007, 13, 267.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. C. Alvarez-Ros, M. Alcolea Palafox, Pharmaceuticals 2014, 7, 695.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  M. Alcolea Palafox, V. K. Rastogi, Spectrochim. Acta, Part A 2002, 58, 411.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  J. E. Carpenter, F. Weinhold, J. Mol. Struct.: THEOCHEM 1988, 169, 41.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  G. Kerestztury, in Handbook of Vibrational Spectroscopy (Eds J. M. Chalmers, P. R. Griffths) 2002, Vol. 1, pp. 71–87 (Wiley-VCH: Weinheim).

[31]  M. Alcolea Palafox, N. Iza, M. de la Fuente, R. Navarro, J. Phys. Chem. B 2009, 113, 2458.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  S. F. Boys, F. Bernardi, Mol. Phys. 1970, 19, 553.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1alt7fM&md5=531add8a3739ea622eed7d96a639ebd5CAS |

[33]  M. Alcolea Palafox, N. Iza, Phys. Chem. Chem. Phys. 2010, 12, 881.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjslWgtg%3D%3D&md5=107549d7f5341da8937f5185edc62de6CAS | 20066373PubMed |

[34]  M. Alcolea Palafox, J. Talaya, J. Phys. Chem. B 2010, 114, 15199.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKjsbjI&md5=a2c45207944a964e868fe166649b3210CAS | 21038904PubMed |

[35]  S. Ortiz, M. C. Alvarez-Ros, M. Alcolea Palafox, V. K. Rastogi, V. Balachandran, S. K. Rathor, Spectrochim. Acta, Part A 2014, 130, 653.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2cjlsFOluw%3D%3D&md5=7fb68219d30a69ff90815192a8cfa494CAS |

[36]  M. Alcolea Palafox, G. Tardajos, A. Guerrero-Martínez, V. K. Rastogi, S. P. Ojha, W. Kiefer, Chem. Phys. 2007, 340, 17.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Gns7jO&md5=f636d393bc4619e3122b3d25215ac4e7CAS |

[37]  M. Alcolea Palafox, N. Iza, M. Gil, J. Mol. Struct.: THEOCHEM 2002, 585, 69.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  F. Peral, D. Troitino, J. Mol. Struct.: THEOCHEM 2010, 944, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitFylsrw%3D&md5=8dba56fd3a2468880772e2a721c4f9e9CAS |

[39]  D. K. Jain, V. Jain, G. N. Singh, K. M. Sonawane, Asian J. Phys. 2000, 9, 487.
         | 1:CAS:528:DC%2BD3cXls12hurk%3D&md5=d16ff6c01ef46aaa9730cf2e9657b2b8CAS |

[40]  V. K. Rastogi, C. Singh, V. Jain, M. Alcolea Palafox, J. Raman Spectrosc. 2000, 31, 1005.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosVOht7g%3D&md5=e1a34821a085309c7331cd2b54275b3cCAS |

[41]  V. K. Rastogi, V. Jain, R. A. Yadav, C. Singh, M. Alcolea Palafox, J. Raman Spectrosc. 2000, 31, 595.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlvFCmsLg%3D&md5=ecd217a5249a8070cc8cbc01dfd6b854CAS |

[42]  S. Aruna, G. Shanmugam, Spectrochim. Acta, Part A 1985, 41, 531.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  W. Saenger, Principles of Nucleic Acid Structure 1984 (Springer Verlag: New York, NY).