Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Regioselective Synthesis of 2,5-Disubstituted Pyrroles via Stepwise Iododesilylation and Coupling Reactions

Qixin Yu A , Xiaoyu Li B , Xinyue Wang A and Jianhui Liu A C D
+ Author Affiliations
- Author Affiliations

A School of Petroleum and Chemical Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology at Panjin, Panjin 124221, China.

B Dalian Dechang Pharmaceutical Company, Distribution Branch of Medicine, Hutan Road No. 11, Zhongshan District, Dalian 116015, Liaoning Province, China.

C State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.

D Corresponding author. Email: liujh@dlut.edu.cn

Australian Journal of Chemistry 71(3) 95-101 https://doi.org/10.1071/CH17341
Submitted: 16 June 2017  Accepted: 2 October 2017   Published: 27 October 2017

Abstract

A new protocol has been developed for the regioselective preparation of 2,5-disubstituted pyrroles. This approach is based on a stepwise iododesilylation and a subsequent coupling reaction, involving a 6-step pathway starting from the simplest pyrrole. A variety of 2,5-disubstituted pyrrole derivatives are accessible in moderate to good yields. In this study, the protection group for the pyrrole nitrogen is carefully chosen and N,N-dimethylaminosulfonyl is the final choice, which facilitates the subsequent double lithiation and makes the pyrrole moiety more stable. However, the attempted removal of this group fails under several different conditions. Instead, unexpected dimethylaminosulfonyl migration to the β-position of the pyrrole ring in the presence of tetrabutylammonium fluoride is observed.


References

[1]  A. Domagala, T. Jarosz, M. Lapkowski, Eur. J. Med. Chem. 2015, 100, 176.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1eltLnO&md5=a49b098b88259fe5749c2df7a4ff2d8eCAS |

[2]  D. Bandyopadhyay, E. Rhodes, B. K. Banik, RSC Adv. 2013, 3, 16756.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlChtL7E&md5=60845d82782a25273089cbb1e6c422edCAS |

[3]  (a) M. R. Johnson, J. Org. Chem. 1997, 62, 1168.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXovVynsg%3D%3D&md5=2927eaa2e6c679505d4ba4814883e98aCAS |
      (b) L. D. Costa, J. I. T. Costa, A. C. Tomé, Molecules 2016, 21, 320.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. M. B. Carvalho, M. G. P. M. S. Neves, A. C. Tomé, F. A. A. Paz, A. M. S. Silva, J. A. S. Cavaleiro, Org. Lett. 2011, 13, 130.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  R. Agneeswari, I. Shin, V. Tamilavan, D. Y. Lee, S. Cho, Y. Jin, S. H. Park, M. H. Hyun, New J. Chem. 2015, 39, 4658.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmtVeis7s%3D&md5=0aeafe5d1425e6d451a5ea3fba8e38e4CAS |

[5]  (a) H. Cho, R. Madden, B. Nisanci, B. Török, Green Chem. 2015, 17, 1088.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVGktbbI&md5=792c98ccd7694c0b40270ab9b005bdccCAS |
      (b) R. Sakhuja, S. S. Panda, K. Bajaj, Curr. Org. Chem. 2012, 16, 789.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. S. P. Rao, S. Jothilingam, Tetrahedron Lett. 2001, 42, 6595.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  A. V. Kel’in, A. W. Sromek, V. Gevorgyan, J. Am. Chem. Soc. 2001, 123, 2074.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpslOjtA%3D%3D&md5=6f7022b1e115cb01fef1256ea5bf8807CAS |

[7]  H. Yamamoto, I. Sasaki, M. Mitsutake, A. Karasudani, H. Imagawa, M. Nishizawa, Synlett 2011, 2815.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlSmtLg%3D&md5=6bd6855ad088e3ea8d4bd87c857d58c4CAS |

[8]  (a) S. M. A. H. Siddiki, A. S. Touchy, C. Chaudhari, K. Kon, T. Toyao, K. Shimizu, Org. Chem. Front. 2016, 3, 846.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xns1ems7w%3D&md5=7501060ea6179f691cfdfc7bcf99592bCAS |
      (b) D. Forberg, J. Obenauf, M. Friedrich, S. M. Hühne, W. Mader, G. Motz, R. Kempe, Catal. Sci. Technol. 2014, 4, 4188.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  Q. W. Zheng, R. M. Hua, J. H. Jiang, L. Zhang, Tetrahedron 2014, 70, 8252.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFyitLrN&md5=60980c1b9f0d20744b0a6966af3f63d1CAS |

[10]  H. Tsutsui, M. Kitamura, K. Narasaka, Bull. Chem. Soc. Jpn. 2002, 75, 1451.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsFKlurs%3D&md5=f140bb0114a89c14ce7577b434ab1a78CAS |

[11]  R. Ballini, S. Gabrielli, A. Palmieri, M. Petrini, RSC Adv. 2014, 4, 43258.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsV2mtr3F&md5=bb7f0b78eb6d596b5c9bf240f66d5310CAS |

[12]  P. W. Davies, N. Martin, Org. Lett. 2009, 11, 2293.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls1GktbY%3D&md5=c94426e993114647e61f2952d1c98b2fCAS |

[13]  P. Ehlers, A. Petrosyan, J. Baumgard, S. Jopp, N. Steinfeld, T. V. Ghochikyan, A. S. Saghyan, C. Fischer, P. Langer, ChemCatChem 2013, 5, 2504.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmsVeiurY%3D&md5=a0f91e1ce29f814aaa7148239933b70bCAS |

[14]  S. R. Hartshorn, Chem. Soc. Rev. 1974, 3, 167.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXpslWksg%3D%3D&md5=b8aef855706601d903f44b3d2bd0c5e4CAS |

[15]  J. H. Liu, Q. C. Yang, T. C. W. Mak, H. N. C. Wong, J. Org. Chem. 2000, 65, 3587.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjt1Wrsb8%3D&md5=da5a48dbc84daed448f6b9ed0fd96d49CAS |

[16]  J. H. Liu, H. W. Chan, H. N. C. Wong, J. Org. Chem. 2000, 65, 3274.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXivVSktro%3D&md5=45de89c52be0592dd0e05de62795ba46CAS |

[17]  J. H. Liu, N. Y. Fu, C. Y. Wei, Z. C. Song, Tetrahedron Lett. 2016, 57, 2530.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xnslaltbs%3D&md5=29b0d061e587f221fbc1f5490ba5c5eaCAS |

[18]  t-Boc was also selected as the protecting group and 2,5-bis(trimethylsilyl)-1H-pyrrole-1-carboxylate was obtained. However, further conversion into mono-iodo product failed, instead the 2,5-diiodo pyrrole derivative was produced. We then took Ts as the protecting group but we observed that the Ts-protected iodopyrrole formed gradually decomposed in the course of iodination, and we could not isolate the desired iodination product.

[19]  J. H. Mirebeau, M. Haddad, M. H. Ellinger, G. Jaouen, J. Louvel, F. Le Bideau, J. Org. Chem. 2009, 74, 8890.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1WhsL%2FP&md5=13107c99a97816fd272b693190433833CAS |

[20]  K. Okabe, M. Natsume, Tetrahedron 1991, 47, 7615.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlvFOjtg%3D%3D&md5=4d090caa17ba1cd52ae1dcd090a6954cCAS |

[21]  (a) J. M. Gerdes, J. E. Bishop, C. A. Mathis, J. Fluor. Chem. 1991, 51, 149.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhvVGiur0%3D&md5=a0ae1853ea0640afee64a811ad60592aCAS |
      (b) D. P. Cox, J. Terpinski, W. Lawrynowicz, J. Org. Chem. 1984, 49, 3216.
         | Crossref | GoogleScholarGoogle Scholar |