

AUSTRALIAN JOURNAL OF CHEMISTRAL AN INTERNATIONAL JOURNAL FOR CHEMICAL SCIENCE

publishing research papers from all fields of chemical science, including synthesis, structure, new materials, macromolecules, supramolecular chemistry, biological chemistry, nanotechnology, surface chemistry, and analytical techniques. Volume 54, 2001 © CSIRO 2001

All enquiries and manuscripts should be directed to:

Dr Alison Green Australian Journal of Chemistry– an International Journal for Chemical Science CSIRO PUBLISHING

PO Box 1139 (150 Oxford St) Collingwood, Vic. 3066, Australia

Telephone: +61 3 9662 7630 Fax: +61 3 9662 7611 E-mail: ajc@publish.csiro.au

Published by **CSIRO** PUBLISHING for CSIRO and the Australian Academy of Science

www.publish.csiro.au/journals/ajc

10.1071/CH01161_AC © CSIRO 2001 Accessory Publication: Aust. J. Chem., 2001, 54(11), 691-704. data_global _audit_creation_method SHELX-97 publ contact author ; 'Banwell, Martin G.' Research School of Chemistry Institute of Advanced Studies The Australian National University Canberra ACT 0200 Australia ; _publ_contact_author_email mgb@rsc.anu.edu.au _publ_contact_author_fax '61 6 2495995' _publ_requested_journal 'Australian Journal of Chemistry' _publ_section_title ; Model Studies Directed Towards the Synthesis of the Oxetane D-Ring of Paclitaxel: Assessment of the Oxyanion Assisted retro-Diels-Alder Reaction as a Means for Generating Oxete ; loop_ _publ_author_name _publ_author_address 'Banwell, Martin G.' Research School of Chemistry ; Institute of Advanced Studies The Australian National University Canberra ACT 0200 Australia ; 'Clark, George R.' Department of Chemistry ; The University of Auckland Private Bag 92019 Auckland New Zealand ; 'Hockless, David C.R.' Research School of Chemistry ; Institute of Advanced Studies The Australian National University Canberra ACT 0200 Australia ; 'Pallich, Susan' ; Research School of Chemistry Institute of Advanced Studies The Australian National University Canberra ACT 0200 Australia ;

```
data_Compd11
_chemical_name_systematic
;
?
;
_chemical_name_common
                                  ?
_chemical_formula_moiety
                                  ?
_chemical_formula_structural
                                  ?
_chemical_formula_analytical
                                  ?
_chemical_formula_sum
 'C17 H16 O3'
_chemical_formula_weight
                                  268.30
_chemical_melting_point
                                  ?
_chemical_compound_source
                                  ?
loop_
_atom_type_symbol
_atom_type_description
 _atom_type_scat_dispersion_real
 _atom_type_scat_dispersion_imag
 _atom_type_scat_source
 'C' 'C' 0.0033
                   0.0016
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 'H' 'H' 0.0000 0.0000
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 '0' '0' 0.0106 0.0060
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
_symmetry_cell_setting
                                  monoclinic
_symmetry_space_group_name_H-M
                                  P2(1)
loop_
 _symmetry_equiv_pos_as_xyz
 'x, y, z'
 '-x, y+1/2, -z'
_cell_length_a
                                 9.0526(4)
_cell_length_b
                                 6.8994(3)
_cell_length_c
                                 10.8782(5)
_cell_angle_alpha
                                 90.00
cell angle beta
                                 97.8660(10)
_cell_angle_gamma
                                 90.00
_cell_volume
                                 673.03(5)
_cell_formula_units_Z
                                  2
_cell_measurement_temperature
                                 203(2)
_cell_measurement_reflns_used
                                 2563
_cell_measurement_theta_min
                                  1.89
_cell_measurement_theta_max
                                  28.22
_exptl_crystal_description
                                 tablets
_exptl_crystal_colour
                                  colourless
_exptl_crystal_size_max
                                  0.36
                                 0.16
_exptl_crystal_size_mid
_exptl_crystal_size_min
                                 0.05
_exptl_crystal_density_meas
                                  ?
_exptl_crystal_density_diffrn
                                  1.324
_exptl_crystal_density_method
                                  ?
_exptl_crystal_F_000
                                  284
_exptl_absorpt_coefficient_mu
                                  0.090
```

```
_exptl_absorpt_correction_type
                                  multi-scan
_exptl_absorpt_correction_T_min
                                  0.9839
_exptl_absorpt_correction_T_max
                                  0.9964
_exptl_special_details
;
 ?
;
_exptl_absorpt_process_details
;
 (Blessing 1995)
;
_diffrn_ambient_temperature
                                  203(2)
_diffrn_radiation_wavelength
                                  0.71073
_diffrn_radiation_type
                                  MoK∖a
_diffrn_radiation_source
                                  'fine-focus sealed tube'
_diffrn_radiation_monochromator
                                  graphite
_diffrn_measurement_device_type
                                 'Siemens SMART (Siemens, 1994a)'
_diffrn_measurement_method
                                  'area detector'
_diffrn_standards_number
                                  ?
_diffrn_standards_interval_count
                                  ?
_diffrn_standards_interval_time
                                  ?
                                  0%
_diffrn_standards_decay_%
_diffrn_reflns_number
                                  2239
_diffrn_reflns_av_R_equivalents
                                  0.0000
                                  0.0410
_diffrn_reflns_av_sigmaI/netI
_diffrn_reflns_limit_h_min
                                  -11
_diffrn_reflns_limit_h_max
                                  11
_diffrn_reflns_limit_k_min
                                  -9
_diffrn_reflns_limit_k_max
                                  7
_diffrn_reflns_limit_l_min
                                  0
_diffrn_reflns_limit_l_max
                                  13
_diffrn_reflns_theta_min
                                  1.89
_diffrn_reflns_theta_max
                                  28.22
_reflns_number_total
                                  2239
_reflns_number_gt
                                  1903
_reflns_threshold_expression
                                  >2sigma(I)
_computing_data_collection
                                  'Siemens SMART (Siemens, 1994a)'
                                  'Siemens SMART (Siemens, 1994a)'
_computing_cell_refinement
                                  'Siemens SMART (Siemens, 1994b)'
_computing_data_reduction
                                  'SHELXS-96 (Sheldrick, 1990)'
_computing_structure_solution
                                  'SHELXL-96 (Sheldrick, 1996)'
computing structure refinement
                                  'SHELXTL-XP (Sheldrick, 1996)'
_computing_molecular_graphics
                                  'SHELXL-96 (Sheldrick, 1996)'
_computing_publication_material
_refine_special_details
;
Refinement of F^2^ against ALL reflections. Weighted R-factors
 wR and all goodnesses of fit S are based on F^2^, conventional
 R-factors R are based on F, with F set to zero for negative F^2^.
 The observed criterion of F^2 > 2sigma(F^2) is used only for
 calculating the R factor for observed reflections and is not relevant
 to the choice of reflections for refinement. R-factors based on F^2^ are
 statistically about twice as large as those based on F, and R-
 factors based on ALL data will be even larger.
;
_refine_ls_structure_factor_coef Fsqd
_refine_ls_matrix_type
                                  full
_refine_ls_weighting_scheme
                                  calc
```

_refine_ls_weighting_scheme_details $w=1/[s^2^{(Fo^2^)+(0.0372P)^2+0.1493P}]$ where $P=(Fo^2^+2Fc^2^)/3'$ _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method none _refine_ls_extinction_coef _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack -0.6(13)_refine_ls_number_reflns 2239 _refine_ls_number_parameters 245 _refine_ls_number_restraints 1 _refine_ls_R_factor_all 0.0521 _refine_ls_R_factor_gt 0.0390 0.0911 _refine_ls_wR_factor_ref _refine_ls_wR_factor_gt 0.0821 _refine_ls_goodness_of_fit_all 1.042 _refine_ls_goodness_of_fit_ref 1.030 _refine_ls_restrained_S_all 1.042 _refine_ls_restrained_S_obs 1.029 _refine_ls_shift/su_max 0.060 _refine_ls_shift/esd_mean 0.007 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_thermal_displace_type _atom_site_occupancy _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_group 01 0 0.05220(16) 0.7927(3) 0.62248(15) 0.0305(4) Uani 1 d . . HO H 0.050(3) 0.838(5) 0.549(3) 0.060(10) Uiso 1 d . . C1 C 0.3268(3) 0.5989(4) 0.5698(2) 0.0328(6) Uani 1 d . . H1 H 0.236(3) 0.571(5) 0.509(2) 0.046(8) Uiso 1 d . . 02 0 0.14574(17) 1.1844(3) 0.75764(14) 0.0315(4) Uani 1 d . . C2 C 0.4600(3) 0.5077(4) 0.5557(3) 0.0398(6) Uani 1 d . . H2 H 0.460(3) 0.419(5) 0.489(3) 0.039(7) Uiso 1 d . . C3 C 0.5884(3) 0.5469(4) 0.6358(3) 0.0425(7) Uani 1 d . . H3 H 0.683(3) 0.488(5) 0.623(3) 0.053(9) Uiso 1 d . . C4 C 0.5867(3) 0.6808(4) 0.7312(2) 0.0364(6) Uani 1 d . . H4 H 0.674(3) 0.709(4) 0.786(2) 0.036(7) Uiso 1 d . . C5 C 0.4542(2) 0.7715(4) 0.7472(2) 0.0268(5) Uani 1 d . C6 C 0.4317(2) 0.9193(4) 0.8460(2) 0.0278(5) Uani 1 d . H6 H 0.523(3) 0.944(4) 0.903(2) 0.037(7) Uiso 1 d . C7 C 0.3069(2) 0.8416(3) 0.91155(19) 0.0257(5) Uani 1 d . . C8 C 0.3121(3) 0.8145(4) 1.0385(2) 0.0334(6) Uani 1 d . . H8 H 0.405(3) 0.858(4) 1.091(2) 0.037(7) Uiso 1 d . . C9 C 0.1917(3) 0.7338(4) 1.0846(2) 0.0408(7) Uani 1 d . . H9 H 0.194(3) 0.717(5) 1.169(3) 0.053(9) Uiso 1 d . . C10 C 0.0644(3) 0.6835(4) 1.0058(2) 0.0397(6) Uani 1 d . . H10 H -0.022(3) 0.628(4) 1.039(2) 0.045(8) Uiso 1 d . . C11 C 0.0552(3) 0.7158(4) 0.8787(2) 0.0314(5) Uani 1 d . H11 H -0.037(3) 0.681(5) 0.820(3) 0.054(8) Uiso 1 d . . C12 C 0.1768(2) 0.7953(3) 0.83259(18) 0.0237(5) Uani 1 d . .

C13 C 0.1875(2) 0.8385(3) 0.69706(19) 0.0241(5) Uani 1 d . . C14 C 0.3243(2) 0.7299(3) 0.66600(19) 0.0259(5) Uani 1 d . C15 C 0.3753(3) 1.1025(4) 0.7728(2) 0.0286(5) Uani 1 d . . H15 H 0.455(3) 1.162(4) 0.731(2) 0.023(6) Uiso 1 d . C16 C 0.2302(2) 1.0531(4) 0.6884(2) 0.0261(5) Uani 1 d H16 H 0.223(2) 1.100(4) 0.603(2) 0.022(6) Uiso 1 d . C17 C 0.2833(3) 1.2494(4) 0.8344(2) 0.0332(5) Uani 1 d . . H17A H 0.305(3) 1.385(4) 0.813(2) 0.039(7) Uiso 1 d . . H17B H 0.274(3) 1.224(4) 0.926(2) 0.029(6) Uiso 1 d . . O3 O 0.0516(2) 0.9136(3) 0.39036(16) 0.0345(4) Uani 1 d . . HWA H 0.017(4) 1.030(7) 0.388(3) 0.061(11) Uiso 1 d . . HWB H -0.012(4) 0.837(6) 0.330(3) 0.074(11) Uiso 1 d . . loop _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 01 0.0290(8) 0.0340(10) 0.0268(8) -0.0002(8) -0.0022(6) -0.0035(7) $\texttt{C1} \ \texttt{0.0441(14)} \ \texttt{0.0285(14)} \ \texttt{0.0278(12)} \ \texttt{0.0013(11)} \ \texttt{0.0118(11)} \ \texttt{0.0002(11)}$ $02 \ 0.0344(9) \ 0.0265(9) \ 0.0322(8) \ -0.0029(7) \ -0.0001(7) \ 0.0048(7)$ $C2 \ 0.0554(16) \ 0.0313(15) \ 0.0369(14) \ 0.0028(12) \ 0.0219(12) \ 0.0083(12)$ C3 0.0438(15) 0.0396(17) 0.0485(15) 0.0117(14) 0.0220(13) 0.0151(13) C4 0.0300(12) 0.0402(15) 0.0393(13) 0.0114(12) 0.0060(10) 0.0072(11) $\texttt{C5} \ \texttt{0.0275(10)} \ \texttt{0.0251(13)} \ \texttt{0.0290(11)} \ \texttt{0.0061(10)} \ \texttt{0.0079(8)} \ \texttt{0.0019(9)}$ $C6 \ 0.0249(11) \ 0.0290(13) \ 0.0283(11) \ 0.0028(11) \ -0.0010(9) \ -0.0003(10)$ $C7 \quad 0.0307(11) \quad 0.0217(12) \quad 0.0249(11) \quad 0.0023(9) \quad 0.0047(9) \quad 0.0033(9)$ $\texttt{C8} \ \texttt{0.0420(13)} \ \texttt{0.0340(15)} \ \texttt{0.0236(11)} \ \texttt{0.0008(11)} \ \texttt{0.0015(10)} \ \texttt{0.0097(12)}$ $C9 \ 0.0594(17) \ 0.0381(17) \ 0.0275(12) \ 0.0076(12) \ 0.0151(12) \ 0.0120(13)$ $C10 \quad 0.0506(16) \quad 0.0337(15) \quad 0.0397(14) \quad 0.0072(12) \quad 0.0236(12) \quad 0.0055(12)$ $C11 \ 0.0349(12) \ 0.0262(14) \ 0.0352(12) \ -0.0009(11) \ 0.0128(10) \ 0.0004(10)$ C12 0.0302(10) 0.0197(11) 0.0215(10) 0.0009(9) 0.0047(8) 0.0043(9) $C13 \ 0.0255(10) \ 0.0242(13) \ 0.0216(10) \ -0.0009(9) \ 0.0003(8) \ -0.0007(9)$ C14 0.0305(11) 0.0250(12) 0.0233(10) 0.0054(10) 0.0080(9) 0.0010(9) C15 0.0299(11) 0.0252(13) 0.0301(11) 0.0015(10) 0.0022(9) -0.0058(10) C16 0.0290(11) 0.0269(13) 0.0220(11) 0.0008(10) 0.0015(9) 0.0039(10) $\texttt{C17} \ \texttt{0.0364(13)} \ \texttt{0.0259(14)} \ \texttt{0.0356(13)} \ \texttt{-0.0016(11)} \ \texttt{-0.0012(10)} \ \texttt{-0.0014(10)}$ 03 0.0367(9) 0.0315(11) 0.0325(9) 0.0023(8) -0.0055(7) -0.0010(8) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles. Correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag O1 C13 1.409(3) . ? C1 C14 1.385(3) . ?

C1 C O2 C O2 C C2 C C3 C C4 C C5 C C6 C C7 C C6 C C7 C C7 C C7 C C11 C12 C13 C13 C15 C15 C15	22 1 216 217 23 1 24 1 25 1 25 1 25 1 25 1 215 28 1 210 29 1 210 212 29 1 212 29 1 212 213 214 212 213 214 215 215 217 217 217 217 217 217 217 217 217 217	.388 1.46 .380 .391 .389 1.40 .515 1.54 .388 1.39 1.54 .388 1.39 1.38 1.39 1.54 .378 1.54 .378 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.5	3(4) 50((71() 1)(4)(4)(5)(3)(1)(6)(3)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)) 3))) 3))) 3)) 3)) 3)) 3)) 3))	· · · · · · · · · · · · · · · · · · ·					
loog 	2 2 2 2 2 2 2 2 2 2 2 2 2 2	ang] ang] ang] ang] ang] ang] ang] C2 1 C17 1 12 3 11 6 12 C17 1 12 C17 1 12 C17 C13 C13 C12 C13 C12 C14 C16 C16 C16 C16 C16 C16 C16 C16 C16 C16	$\begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	aaa ssp845.6.17.01023050200.536 ttt iiu91((((7(7(455(3(6.8.66.737	ooo ttb(2322(24298(262)(4.9.0442.7.)))))))))))))))))))))))))))))))))))1) 1 11) 1)2(2((((((((())))))))))))))	<pre>ite ite ymr ymr) .) .) .) .) .) .) .) .)) .)</pre>	<pre>=</pre>	abe abe ry ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	1_1 1_2 1_3 1 3

C17 C15 C6 118.7(2) . . ? C16 C15 C6 108.8(2) . . ? O2 C16 C15 91.09(18) . . ? O2 C16 C13 114.35(18) . . ? C15 C16 C13 112.32(19) . . ? O2 C17 C15 91.10(18) . . ? _refine_diff_density_max 0.141 _refine_diff_density_min -0.180

_refine_diff_density_min	-0.180
_refine_diff_density_rms	0.040

```
data_MGB32
audit creation date
                                 '2001-11-15'
audit creation method
                                  'by teXsan v1.8'
_audit_update_record
;
12-1997 data collection and refinement by dcrh
2001-11-15 cif produced by acwillis after fixing error
2001-11-16 passes checkcif with minor alerts
#-----
                                                        _____
                                ' Australian J. Chem. '
_publ_requested_journal
                                 ′ FO ′
_publ_requested_category
                                 ' Martin G. Banwell '
_publ_contact_author_name
_publ_contact_author_address
;
Research School of Chemistry,
Australian National University,
Canberra, A. C. T. 0200, Australia
;
_publ_contact_letter
;
    ENTER TEXT OF LETTER
;
_publ_requested_coeditor_name
                                   ?
_publ_contact_author_phone
                                  ' 61 2 6125 4109 '
                                 ' 61 2 6125 0750 '
_publ_contact_author_fax
                                  ' willis@rsc.anu.edu.au '
_publ_contact_author_email
loop_
_publ_author_name
_publ_author_address
' M. G. Banwell '
;
Research School of Chemistry,
Institute of Advanced Studies,
Australian National University,
Canberra, A. C. T. 0200, Australia
' G. R. Clark '
;
Department of Chemistry,
The University of Auckland,
Private Bag 92019,
Auckland, New Zealand.
;
' D. C. R. Hockless '
;
Research School of Chemistry,
Institute of Advanced Studies,
Australian National University,
Canberra, A. C. T. 0200, Australia
' S. Pallich '
```

```
Research School of Chemistry,
Institute of Advanced Studies,
Australian National University,
Canberra, A. C. T. 0200, Australia
_publ_section_title
;
Model Studies Directed Towards the Synthesis of the Oxetane
D-Ring of Paclitaxel: Assessment of the Oxyanion Assisted
retro-Diels-Alder Reaction as a Means for Generating Oxete.
_publ_section_title_footnote
                                     ' ENTER ANY FOOTNOTES TO TITLE '
_publ_section_abstract
;
    ENTER ABSTRACT
;
_publ_section_exptl_refinement
;
    ENTER EXPERIMENTAL SECTION
;
_publ_section_comment
;
    ENTER TEXT
;
_publ_section_references
;
Molecular Structure Corporation. (1992-1997). teXsan.
Single Crystal Structure Analysis Software. Version 1.7.
MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Sheldrick, G.M. (1985). In: "Crystallographic
Computing 3" (Eds G.M. Sheldrick, C. Kruger and
R. Goddard) Oxford University Press, pp. 175-189.
;
_publ_section_acknowledgements
;
    ENTER ACKNOWLEDGEMENTS
;
_publ_section_table_legends
;
    ENTER TABLE LEGENDS
;
_publ_section_figure_captions
;
     ENTER FIGURE CAPTIONS
;
'MSC/AFC Diffractometer Control'
'MSC/AFC Diffractometer Control'
_computing_data_collection
_computing_cell_refinement
                                     'teXsan (MSC, 1992-1997)'
_computing_data_reduction
```

;

```
_computing_structure_solution
SHELXS86 (Sheldrick, 1985)
_computing_structure_refinement
                                  'teXsan (MSC, 1992-1997)'
_computing_structure_refinement 'teXsan (MSC, 1992-1997)'
_computing_publication_material 'teXsan (MSC, 1992-1997)'
_cell_length_a
                                   7.866(9)
_cell_length_b
                                   21.156(3)
_cell_length_c
                                   10.506(3)
_cell_angle_alpha
                                   90
_cell_angle_beta
                                   90
_cell_angle_gamma
                                   90
_cell_volume
                                   1748(1)
_cell_formula_units_Z
                                   4
_cell_measurement_temperature
                                   213.2
                                   20
_cell_measurement_reflns_used
_cell_measurement_theta_min
                                   28.7
                                  32.7
_cell_measurement_theta_max
#-----
_symmetry_cell_setting
                                  orthorhombic
                                'Pna 21
_symmetry_space_group_name_H-M
_symmetry_Int_Tables_number
                                  33
_symmetry_space_group_name_Hall
                                  ?
loop_
_symmetry_equiv_pos_as_xyz
  ' +x, +y, +z'
' -x, -y,1/2+z'
  '1/2-x,1/2+y,1/2+z'
  '1/2+x,1/2-y, +z'
#------
                       _____
_publ_section_exptl_prep
;
    ENTER EXPERIMENTAL SECTION
;
_exptl_crystal_description
                                  'plate'
                                  'yellow'
_exptl_crystal_colour
_exptl_crystal_size_max
                                  0.24
_exptl_crystal_size_mid
                                  0.12
_exptl_crystal_size_min
                                  0.04
_exptl_crystal_density_diffrn
                                  1.274
_exptl_crystal_density_meas
                                   'not measured'
_chemical_formula_weight
                                  335.40
_chemical_formula_analytical
                                  2
_chemical_formula_sum
                                   'C21 H21 N O3 '
                                  'C21 H21 N O3 '
_chemical_formula_moiety
                                  ?
_chemical_formula_structural
                                  ?
_chemical_compound_source
                                  712.00
_exptl_crystal_F_000
                                  0.684
_exptl_absorpt_coefficient_mu
_exptl_absorpt_correction_type
                                  none
_exptl_special_details
The crystal was an extremely thin plate so data is very weak
 and precision therefore poor.
The scan width was (0.89+0.30\tan) with an \w
scan speed of 2\% per minute
(up to 5 scans to achieve I/(s(I) > 10).
Stationary background counts were recorded at each end of the
```

```
scan, and the scan time:background time ratio was 2:1.
Data can only be collected to 2theta 120 deg on a AFC6R diffractometer
when the evacuated beam tunnel in used.
Mass attenuation coefficients for absorption from
International Tables for X-ray Crystallography, Vol IV (1974) Table 2.1C.
_diffrn_special_details
;
  ?
;
_diffrn_ambient_temperature
                                     213.2
_diffrn_radiation_wavelength
                                     1.5418
_diffrn_radiation_type
                                      'Cu K∖a'
_diffrn_radiation_source
                                    'Rigaku rotating anode'
_diffrn_radiation_monochromator
                                     graphite
_diffrn_radiation_detector
                                     'scintillation counter'
_diffrn_measurement_device_type
                                     'Rigaku AFC6R'
_diffrn_measurement_method
                                     w-2
_diffrn_measurement_device_details
Rigaku AFC6R diffractometer with extended arm and
evacuated collimator and beam tunnel.
Data cannot be collected beyond y 60 deg in this configuration.
The crystal was an extremely thin plate so data is very weak
and precision therefore poor.
;
_diffrn_standards_number
                                     3
_diffrn_standards_interval_count
                                    150
_diffrn_standards_decay_%
                                     -11.83
loop_
_diffrn_standard_refln_index_h
_diffrn_standard_refln_index_k
_diffrn_standard_refln_index_l
      2
              0
                     0
      0
              1
                     1
      0
              0
                     4
_diffrn_reflns_number
                                      2916
_reflns_number_total
                                     1391
_reflns_number_gt
                                     891
_reflns_threshold_expression
                                      I>3.00\s(I)
_diffrn_reflns_av_R_equivalents
                                     0.00000
_diffrn_reflns_av_sigmaI/netI
                                     0.110
_diffrn_reflns_limit_h_min
                                     0
_diffrn_reflns_limit_h_max
                                     8
_diffrn_reflns_limit_k_min
                                     0
_diffrn_reflns_limit_k_max
                                     23
_diffrn_reflns_limit_l_min
                                     -11
_diffrn_reflns_limit_l_max
                                     11
_diffrn_reflns_theta_min
                                      2.09
_diffrn_reflns_theta_max
                                      60.30
_diffrn_reflns_theta_full
                                    60
_diffrn_measured_fraction_theta_max 1.
_diffrn_measured_fraction_theta_full 1.
_diffrn_reflns_reduction_process
                                    'Lp corrections applied'
_diffrn_orient_matrix_UB_11
                                     -0.09501
_diffrn_orient_matrix_UB_12
                                      0.00423
_diffrn_orient_matrix_UB_13
                                     0.00227
_diffrn_orient_matrix_UB_21
                                      0.00467
```

_diffrn_orient_matrix_UB_22 0.00647 _diffrn_orient_matrix_UB_23 0.04715 _diffrn_orient_matrix_UB_31 0.00346 _diffrn_orient_matrix_UB_32 0.12689 _diffrn_orient_matrix_UB_33 -0.00250 loop_ _atom_type_symbol _atom_type_oxidation_number _atom_type_number_in_cell _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C 0 84 0.017 0.009 ;International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.1) 84 0.000 0.000 н О ;International Tables for Crystallography (1992, Vol. C, Table 6.1.1.2) 4 0.029 0.018 N 0 ;International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.1) 12 0.047 0.032 0 0 ;International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.1) loop_ _atom_site_label _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_occupancy _atom_site_refinement_flags atom site adp type atom site calc flag atom site calc attached atom O(1') 0.7739(7) 0.3139(3) 0.0400 0.036(2) 1.000 . Uani d ? O(2') 0.5037(7) 0.3210(2) -0.0510(7) 0.038(2) 1.000 . Uani d? O(3') 0.2577(8) 0.3521(3) -0.2330(8) 0.055(2) 1.000 . Uani d? N(12') 0.617(1) 0.4796(3) 0.004(1) 0.049(2) 1.000 . Uani d ? C(1) 0.772(1) 0.2342(4) 0.272(1) 0.042(3) 1.000 . Uani d ? C(1') 0.621(1) 0.2833(4) 0.009(1) 0.044(3) 1.000 . Uani d? C(2) 0.776(1) 0.2014(4) 0.385(1) 0.059(3) 1.000 . Uani d ? C(2') 0.547(1) 0.3329(4) -0.182(1) 0.052(3) 1.000 . Uani d ? C(3) 0.788(1) 0.2323(5) 0.500(1) 0.069(4) 1.000 . Uani d ? C(3') 0.422(1) 0.3771(4) -0.233(1) 0.056(3) 1.000 . Uani d ? C(4a) 0.796(1) 0.3323(4) 0.391(1) 0.037(3) 1.000 . Uani d ? C(4) 0.799(1) 0.2995(4) 0.503(1) 0.050(3) 1.000 . Uani d ? C(4') 0.137(1) 0.3933(6) -0.285(1) 0.084(4) 1.000 . Uani d ? C(5) 1.080(1) 0.4600(4) 0.306(1) 0.046(3) 1.000 . Uani d ? C(6) 1.198(1) 0.4692(4) 0.210(1) 0.050(3) 1.000 . Uani d ? C(7) 1.185(1) 0.4382(5) 0.095(1) 0.051(3) 1.000 . Uani d ? C(8) 1.050(1) 0.3951(4) 0.074(1) 0.041(3) 1.000 . Uani d ? C(8a) 0.931(1) 0.3854(3) 0.169(1) 0.031(2) 1.000 . Uani d ? C(9) 0.777(1) 0.3450(4) 0.160(1) 0.032(2) 1.000 . Uani d ? C(9a) 0.779(1) 0.3019(3) 0.274(1) 0.032(2) 1.000 . Uani d ?

C(10) 0.806(1) 0.4030(4) 0.375(1) 0.042(3) 1.000 . Uani d ? C(10a) 0.947(1) 0.4183(3) 0.286(1) 0.036(3) 1.000 . Uani d ? C(11) 0.639(1) 0.4230(4) 0.3139(9) 0.037(3) 1.000 . Uani d ? C(12) 0.622(1) 0.3906(3) 0.180(1) 0.032(2) 1.000 . Uani d ? C(12') 0.619(1) 0.4403(4) 0.078(1) 0.038(3) 1.000 . Uani d ? H(1) 0.7635 0.2123 0.1932 0.050 1.000 . Uiso c ? H(1'a) 0.6461 0.2487 -0.0452 0.053 1.000 . Uiso c ? H(1'b) 0.5712 0.2680 0.0857 0.053 1.000 . Uiso c ? H(2) 0.7706 0.1565 0.3842 0.070 1.000 . Uiso c ? H(2'a) 0.6575 0.3509 -0.1874 0.062 1.000 . Uiso c ? H(2'b) 0.5442 0.2946 -0.2291 0.062 1.000 . Uiso c ? H(3) 0.7877 0.2090 0.5772 0.083 1.000 . Uiso c ? H(3'a) 0.4226 0.4142 -0.1820 0.067 1.000 . Uiso c ? H(3'b) 0.4524 0.3875 -0.3177 0.067 1.000 . Uiso c ? H(4) 0.8094 0.3213 0.5814 0.060 1.000 . Uiso c ? H(4'a) 0.1502 0.4340 -0.2481 0.100 1.000 . Uiso c ? H(4'b) 0.1526 0.3959 -0.3743 0.100 1.000 . Uiso c ? H(4'c) 0.0260 0.3779 -0.2671 0.100 1.000 . Uiso c ? H(5) 1.0895 0.4821 0.3839 0.055 1.000 . Uiso c ? H(6) 1.2894 0.4975 0.2243 0.060 1.000 . Uiso c ? H(7) 1.2666 0.4458 0.0305 0.061 1.000 . Uiso c ? H(8) 1.0412 0.3733 -0.0052 0.049 1.000 . Uiso c ? H(10) 0.8220 0.4233 0.4551 0.050 1.000 . Uiso c ? H(11b) 0.6370 0.4676 0.3039 0.045 1.000 . Uiso c ? H(11a) 0.5465 0.4104 0.3665 0.045 1.000 . Uiso c ? H(12) 0.5194 0.3670 0.1771 0.038 1.000 . Uiso c ? loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_12 _atom_site_aniso_U_13 _atom_site_aniso_U_23 $O(1') \quad 0.034(4)$ 0.034(3) 0.039(3) -0.005(3) 0.005(3) -0.009(3)0(2') 0.039(4) 0.001(3) -0.005(3) -0.002(3)0.041(3) 0.035(3) 0(3') 0.057(5) 0.053(4) 0.056(4) 0.012(4) -0.022(4)-0.008(4)N(12') 0.050(5)0.040(4)0.058(5) -0.001(4)-0.008(5)0.019(4) C(1) 0.027(5)0.041(5) 0.058(6) 0.000(4) -0.001(5)-0.001(5) $C(1') \quad 0.049(6)$ 0.037(5) 0.045(5) 0.000(5) -0.010(5)-0.010(5)C(2) 0.053(7) 0.047(5) 0.075(7)-0.014(5)-0.006(7)0.033(6) C(2') 0.057(7)0.055(6) 0.044(6) -0.001(5)0.000(6) -0.002(5)0.057(7)-0.009(7) -0.007(7)C(3) 0.057(8)0.09(1) 0.035(7) $C(3') \quad 0.078(8)$ 0.060(6) 0.030(5) -0.010(6)-0.008(6)-0.008(5)C(4a) 0.038(5) 0.032(4)0.042(6) -0.005(4)0.000(5) 0.000(5)C(4) 0.047(7)0.062(7) 0.040(6) -0.009(5)-0.005(5)0.004(6) $C(4') \quad 0.067(8)$ 0.107(9) 0.077(9) 0.023(8) -0.021(8) -0.026(8) C(5) 0.037(5) 0.033(5) 0.068(7) -0.003(4)-0.012(6)-0.004(5)C(6) 0.032(6) 0.037(5) 0.081(8) -0.005(5)-0.010(6) 0.003(6) 0.033(6) 0.065(7) 0.002(5) 0.009(6) 0.018(6) C(7) 0.054(6) C(8) 0.052(6) -0.004(4)0.007(5) 0.028(5)0.043(5) 0.003(5) 0.024(5) 0.004(4) -0.005(4) 0.005(4)C(8a) 0.034(4) 0.035(5) C(9) 0.027(5)0.028(4)0.040(5)-0.002(4)-0.004(5)0.003(4)C(9a) 0.028(4)0.027(4) 0.042(5)0.000(4)0.002(5) 0.006(4)C(10) 0.040(6) 0.048(5) 0.038(5) -0.006(4)0.001(5) -0.015(5)C(10a) 0.027(5) 0.041(5) 0.041(6) -0.003(4)-0.010(5)0.005(4)C(11) 0.035(5)0.040(5) 0.037(5) -0.004(4) 0.004(4) -0.004(4)C(12) 0.028(5) 0.031(5) 0.036(4) 0.004(4) 0.004(4) 0.005(4) 0.047(6) 0.045(5) 0.000(4) C(12') 0.021(5)0.000(5) -0.017(5)

_refine_special_details Origin assigned in z direction by fixing z coordinate of one non-H atom. _refine_ls_structure_factor_coef F _refine_ls_matrix_type full _refine_ls_weighting_scheme sigma _refine_ls_weighting_details $w = 1/[\langle s^2(Fo) + 0.00006 | Fo |^2]$; _refine_ls_hydrogen_treatment noref _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_abs_structure_details ; Absolute structure arbitarily assigned. ; _refine_ls_abs_structure_Flack ? 891 _refine_ls_number_reflns _refine_ls_number_parameters 225 _refine_ls_number_restraints 0 _refine_ls_number_constraints 0 0.0984 _refine_ls_R_factor_all 0.0463 _refine_ls_R_factor_gt _refine_ls_wR_factor_all 0.0547 _refine_ls_wR_factor_ref 0.0489 _refine_ls_goodness_of_fit_all 1.733 _refine_ls_goodness_of_fit_ref 2.047 _refine_ls_shift/su_max 0.0047 _refine_ls_shift/su_mean 0.0046 _refine_diff_density_min -0.17 _refine_diff_density_max 0.18 _geom_special_details ; ? ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_1 _geom_bond_site_symmetry_2 _geom_bond_publ_flag O(1') C(1') 1.41(1) . . yes O(1') C(9) 1.42(1) . . yes O(2') C(1') 1.373(9) . . yes O(2') C(2') 1.44(1) . . yes O(3') C(3') 1.40(1) . . yes O(3') C(4') 1.40(1) . . yes N(12') C(12') 1.14(1) . . yes C(1) C(2) 1.38(1) . . yes C(1) C(9a) 1.43(1) . . yes C(1) H(1) 0.95 . . no C(1') H(1'a) 0.95 . . no C(1') H(1'b) 0.95 . . no C(2) C(3) 1.37(2) . . yes C(2) H(2) 0.95 . . no C(2') C(3') 1.46(1) . . yes C(2') H(2'a) 0.95 . . no

```
C(2') H(2'b) 0.95 . . no
  C(3) C(4) 1.43(1) . . yes
  C(3) H(3) 0.95 . . no
  C(3') H(3'a) 0.95 . . no
  C(3') H(3'b) 0.95 . . no
  C(4a) C(4) 1.37(1) . . yes
  C(4a) C(9a) 1.39(1) . . yes
  C(4a) C(10) 1.51(1) . . yes
  C(4) H(4) 0.95 . . no
  C(4') H(4'a) 0.95 . . no
  C(4') H(4'b) 0.95 . . no
  C(4') H(4'c) 0.95 . . no
  C(5) C(6) 1.38(1) . . yes
  C(5) C(10a) 1.38(1) . . yes
  C(5) H(5) 0.95 . . no
  C(6) C(7) 1.38(1) . . yes
  C(6) H(6) 0.95 . . no
  C(7) C(8) 1.42(1) . . yes
  C(7) H(7) 0.95 . . no
  C(8) C(8a) 1.39(1) . . yes
  C(8) H(8) 0.95 . . no
  C(8a) C(9) 1.48(1) . . yes
  C(8a) C(10a) 1.41(1) . . yes
  C(9) C(9a) 1.51(1) . . yes
  C(9) C(12) 1.57(1) . . yes
  C(10) C(10a) 1.49(1) . . yes
  C(10) C(11) 1.53(1) . . yes
  C(10) H(10) 0.95 . . no
  C(11) C(12) 1.57(1) . . yes
  C(11) H(11b) 0.95 . . no
  C(11) H(11a) 0.95 . . no
 C(12) C(12') 1.50(1) . . yes
  C(12) H(12) 0.95 . . no
loop_
_geom_angle_atom_site_label_1
_geom_angle_atom_site_label_2
_geom_angle_atom_site_label_3
_geom_angle
_geom_angle_site_symmetry_1
_geom_angle_site_symmetry_2
_geom_angle_site_symmetry_3
geom angle publ flag
 C(1') O(1') C(9) 115.6(6) . . . yes
 C(1') O(2') C(2') 112.5(7) . . . yes
 C(3') O(3') C(4') 113.1(8) . . . yes
 C(2) C(1) C(9a) 119.2(9) . . . yes
 C(2) C(1) H(1) 120.4 . . . no
 C(9a) C(1) H(1) 120.4 . . . no
 O(1') C(1') O(2') 114.4(6) . . . yes
 O(1') C(1') H(1'a) 108.2 . . . no
 O(1') C(1') H(1'b) 108.3 . . . no
 O(2') C(1') H(1'a) 108.2 . . . no
 O(2') C(1') H(1'b) 108.2 . . . no
 H(1'a) C(1') H(1'b) 109.5 . . . no
 C(1) C(2) C(3) 121.3(9) . . . yes
  C(1) C(2) H(2) 119.4 . . . no
  C(3) C(2) H(2) 119.4 . . . no
  O(2') C(2') C(3') 107.5(8) . . . yes
  O(2') C(2') H(2'a) 110.0 . . . no
  O(2') C(2') H(2'b) 110.0 . . . no
```

C(3') C(2') H(2'a) 110.0 . . . no C(3') C(2') H(2'b) 110.0 . . . no H(2'a) C(2') H(2'b) 109.5 . . . no C(2) C(3) C(4) 119.8(9) . . . yes C(2) C(3) H(3) 120.1 . . . no C(4) C(3) H(3) 120.1 . . . no O(3') C(3') C(2') 112.5(8) . . . yes O(3') C(3') H(3'a) 108.7 . . . no O(3') C(3') H(3'b) 108.7 . . . no C(2') C(3') H(3'a) 108.7 . . . no C(2') C(3') H(3'b) 108.7 . . . no H(3'a) C(3') H(3'b) 109.4 . . . no C(4) C(4a) C(9a) 121.8(7) . . . yes C(4) C(4a) C(10) 126.4(9) . . . yes C(9a) C(4a) C(10) 111.9(8) . . . yes C(3) C(4) C(4a) 119.1(9) . . . yes C(3) C(4) H(4) 120.4 . . . no C(4a) C(4) H(4) 120.4 . . . no O(3') C(4') H(4'a) 109.5 . . . no O(3') C(4') H(4'b) 109.5 . . . no O(3') C(4') H(4'c) 109.5 . . . no H(4'a) C(4') H(4'b) 109.4 . . . no H(4'a) C(4') H(4'c) 109.5 . . . noH(4'b) C(4') H(4'c) 109.5 . . . no C(6) C(5) C(10a) 119.2(9) . . . yes C(6) C(5) H(5) 120.4 . . . no C(10a) C(5) H(5) 120.4 . . . no C(5) C(6) C(7) 121.4(8) . . . yes C(5) C(6) H(6) 119.3 . . . no C(7) C(6) H(6) 119.3 . . . no C(6) C(7) C(8) 120.1(9) . . . yes C(6) C(7) H(7) 120.0 . . . no C(8) C(7) H(7) 119.9 . . . no C(7) C(8) C(8a) 118.9(8) . . . yes C(7) C(8) H(8) 120.5 . . . no C(8a) C(8) H(8) 120.5 . . . no C(8) C(8a) C(9) 126.0(8) . . . yes C(8) C(8a) C(10a) 119.4(7) . . . yes C(9) C(8a) C(10a) 114.5(7) . . . yes O(1') C(9) C(8a) 109.8(7) . . . yes O(1') C(9) C(9a) 115.2(6) . . . yes C(12) 113.1(7) . . . yes O(1') C(9)C(8a) C(9) C(9a) 106.6(7) . . . yes C(8a) C(9) C(12) 105.7(6) . . . yes C(9a) C(9) C(12) 105.8(7) . . . yes C(1) C(9a) C(4a) 118.8(8) . . . yes C(1) C(9a) C(9) 126.2(9) . . . yes C(4a) C(9a) C(9) 115.0(7) . . . yes C(4a) C(10) C(10a) 108.8(7) . . . yes C(4a) C(10) C(11) 105.9(7) . . . yes C(4a) C(10) H(10) 111.2 . . . no C(10a) C(10) C(11) 108.4(7) . . . yes C(10a) C(10) H(10) 111.2 . . . no C(11) C(10) H(10) 111.2 . . . no C(5) C(10a) C(8a) 121.0(8) . . . yes C(5) C(10a) C(10) 127.2(8) . . . yes C(8a) C(10a) C(10) 111.8(7) . . . yes C(10) C(11) C(12) 109.2(7) . . . yes C(10) C(11) H(11b) 109.5 . . . no C(10) C(11) H(11a) 109.5 . . . no C(12) C(11) H(11b) 109.5 . . . no

C(12) C(11) H(11a) 109.5 . . . no H(11b) C(11) H(11a) 109.5 . . . no C(9) C(12) C(11) 109.1(7) . . . yes C(9) C(12) C(12') 110.1(7) . . . yes C(9) C(12) H(12) 109.4 . . no C(11) C(12) C(12') 109.5(6) . . . yes C(11) C(12) H(12) 109.4 . . . no C(12') C(12) H(12) 109.4 . . . no $N(12\,')\ C(12\,')\ C(12)\ 177.5(9)$. . . yes #----loop_ _geom_contact_atom_site_label_1 _geom_contact_atom_site_label 2 _geom_contact_distance _geom_contact_site_symmetry_1 _geom_contact_site_symmetry_2 _geom_contact_publ_flag C(1') 3.43(1) 0(1') . 4 no 0(1') 0(2′) 3.511(7) . 4 no 0(3′) C(3) 3.33(1) . 4_454 no C(5) . 2_764 no N(12′) 3.42(1) 3.51(1) . 2_664 no N(12′) C(11) . 2_764 no N(12′) C(6) 3.58(1) C(12') 3.42(1) C(7) . 1_655 no loop _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion _geom_torsion_publ_flag O(1') C(1') O(2') C(2') 74.7(9) no O(1') C(9) C(8a) C(8) 4(1) no O(1') C(9) C(8a) C(10a) -179.4(7) no O(1') C(9) C(9a) C(1) . . . -3(1) no O(1') C(9) C(9a) C(4a) 175.3(8) no O(1') C(9) C(12) C(11) -179.3(6) no O(1') C(9) C(12) C(12') -59.1(8) no O(2') C(1') O(1') C(9) 88.0(9) no O(2') C(2') C(3') O(3') . . . -63(1) no N(12') C(12') C(12) C(9) -124.2(2) no N(12') C(12') C(12) C(11) -4.3(2) no C(1) C(2) C(3) C(4) . . . -1(2) no C(1) C(9a) C(4a) C(4) . . . -2(1) no C(1) C(9a) C(4a) C(10) 178.7(8) no C(1) C(9a) C(9) C(8a) -125.0(9) no C(1) C(9a) C(9) C(12) 122.9(9) no C(1') O(1') C(9) C(8a) -168.9(7) no C(1') O(1') C(9) C(9a) 70.8(9) no $C(1') O(1') C(9) C(12) \dots -51.1(9)$ no $C(1') O(2') C(2') C(3') \dots -175.7(7)$ no C(2) C(1) C(9a) C(4a) . . . 2(1) no C(2) C(1) C(9a) C(9) . . . 179.7(9) no C(2) C(3) C(4) C(4a) . . . 1(2) no C(2') C(3') O(3') C(4') -178.3(8) no C(3) C(2) C(1) C(9a) 0(2) no

	$C(3) C(4) C(4a) C(9a) \ldots 1(2)$ no
	C(3) C(4) C(4a) C(10) 179.8(9) no
	C(4a) C(9a) C(9) C(8a) 53(1) no
	C(4a) C(9a) C(9) C(12)59.0(9) no
	C(4a) C(10) C(10a) C(5)128.1(9) no
	C(4a) C(10) C(10a) C(8a) 54(1) no
	C(4a) C(10) C(11) C(12)61.4(9) no
	C(4) C(4a) C(9a) C(9) 179.8(9) no
	C(4) C(4a) C(10) C(10a) 126(1) no
	C(4) C(4a) C(10) C(11)118(1) no
	$C(5) C(6) C(7) C(8) \dots -1(2)$ no
	C(5) C(10a) C(8a) C(8) 0(1) no
	C(5) C(10a) C(8a) C(9)176.8(7) no
	C(5) C(10a) C(10) C(11) 117.3(9) no
	C(6) C(5) C(10a) C(8a) 0(1) no
	C(6) C(5) C(10a) C(10)178.6(8) no
	C(6) C(7) C(8) C(8a) 1(1) no
	C(7) C(6) C(5) C(10a) 1(1) no
	C(7) C(8) C(8a) C(9) 176.3(8) no
	C(7) C(8) C(8a) C(10a) 0(1) no
	C(8) C(8a) C(9) C(9a) 129.1(8) no
	C(8) C(8a) C(9) C(12)118.7(9) no
	C(8) C(8a) C(10a) C(10) 178.7(7) no
	C(8a) C(9) C(12) C(11)59.1(8) no
	C(8a) C(9) C(12) C(12') 61.1(9) no
	C(8a) C(10a) C(10) C(11)61.0(8) no
	C(9) C(8a) C(10a) C(10) 2(1) no
	C(9) C(9a) C(4a) C(10) 0(1) no
	C(9) C(12) C(11) C(10) 4.0(9) no
	C(9a) C(4a) C(10) C(10a)55(1) no
	C(9a) C(4a) C(10) C(11) 62(1) no
	C(9a) C(9) C(8a) C(10a)54.0(9) no
	C(9a) C(9) C(12) C(11) 53.7(8) no
	C(9a) C(9) C(12) C(12') 173.9(7) no
	C(10) C(11) C(12) C(12')116.6(7) no
	C(10a) C(8a) C(9) C(12) 58.2(9) no
	C(10a) C(10) C(11) C(12) 55.1(8) no
#-	

#===END