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Accessory Material

Connection Between Root Signs and Coefficient Signs of Characteristic Polynomials for
Even, Fully-π-bonded, Non-alternant Hydrocarbons Which Lack NBMOs

1. The polynomial coefficient an [see equation (1)], is obtained as shown below.

an = (-r1)(-r2)..(-ri)....(-rn) (4)

Note that ri is the ith root of the characteristic polynomial [see equation (1)].

Consecutive polynomial coefficients are obtained in similar ways:

an-1 = [(-r1)(-r2)...(-rn-1)] + [(-r1)(-r2)...(-rn-2)(-rn)]

+ .... + [(-r2)(-r3)...(-rn)] (5)

an-2 = [(-r1)(-r2)...(-rn-2)] + [(-r1)(-r2)...(-rn-3)(-rn)]

+ ... + [(-r3)(-r4)...(-rn)] (6)

2. Another form can be obtained for each polynomial coefficient, expressing it in terms

of an. Consider an-1.

an-1 = [(-r1)(-r2)...(-rn-1)] + [(-r1)(-r2)...(-rn-2)(-rn)]

+ ... + [(-r2)(-r3)...(-rn)]



= -rn(-rn)
-1[(-r1)(-r2)...(-rn-1)] + -rn-1(-rn-1)

-1[(-r1)

(-r2)...(-rn-2)(-rn)] + ... + -r1(-r1)
-1[(-r2)(-r3)...(-rn)]

= (-rn)
-1[(-r1)...(-rn)] + (-rn-1)

-1[(-r1)...(-rn)] + ...

+ (-r1)
-1[(-r1)...(-rn)]

= (-rn)
-1an + (-rn-1)

-1an + ... + (-r1)
-1an

= -an (r1
-1 + r2

-1 + ... + rn
-1) (7)

Similarly, expressions for other coefficients can be obtained in terms of an e.g.

an-2 = an[(r1r2)
-1 + (r1r3)

-1 + ... + (rn-1rn)
-1] (8)

an-3 = -an[(r1r2r3)
-1 + (r1r2r4)

-1 + ... + (rn-2rn-1rn)
-1] (9)

an-4 = an[(r1r2r3r4)
-1 + (r1r2r3r5)

-1 + ... + (rn-3rn-2rn-1rn)
-1] (10)

and so on. Hence, the sign for a given characteristic polynomial coefficient depends

on the signs of a series of terms involving polynomial root reciprocals. The largest

reciprocal values are those for the smallest roots. The smallest roots are associated

with the frontier orbitals (rp, rp+1) and their neighbours (rp-1,rp+2 etc.). Note n = 2p.

For non-alternant structures which have ∆ = 0 (equal numbers of positive and

negative roots), sign[(-1)p] = sign[an].



Sign[an-1] will usually be determined by the frontier orbital eigenvalue which is

closest to the non-bonding level [e.g. sign[an] = -sign[an-1] for methylene

cyclopropene (low-lying LUMO) and sign[an] = sign[an-1] for methylene

cyclopentadiene (high-lying HOMO)].

3. For non-alternant structures which have ∆ = 2, sign[(-1)p] =

-sign[an]. In such systems, both rp, rp+1 (the small roots) have the same sign and are

likely to determine the sign of the sum of root reciprocals shown in equation (7).

Structures which have an excess of two positive roots will almost

certainly have sign[an] = -sign[an-1]. Structures which have

an excess of two negative roots will almost certainly have sign[an] = sign[an-1].

4. For non-alternant structures which have ∆ = 4, sign[(-1)p] = sign[an]. In such

systems, rp-1, rp, rp+1, rp+2 (the small roots) have the same sign and are very likely to

determine the sign of the sums of root reciprocal terms shown in equations (7) and

(8). Structures which have an excess of four positive roots will almost certainly have

sign[an] = -sign[an-1] = sign[an-2]. Structures which have an excess of four negative

roots will almost certainly have sign[an] = sign[an-1] = sign[an-2].

5. Each time that ∆ increases by 2, another coefficient sign is likely to join the growing

pattern of coefficient signs in accord with the expectations arising from equations

(9), (10) and so on. In general (∆/2)+1 adjacent polynomial coefficients (beginning

with an) will have signs that don't match/do match when the larger of the subset of

polynomial roots is positive/negative i.e. (if s is one sign and o the other) excess π-

antibonding orbitals will be associated with



the coefficient sign pattern s,s,s,s... and excess π-bonding orbitals will be associated with

the coefficient sign pattern s,o,s,o,s...

Connection Between Root Signs and Coefficient Signs of
Characteristic Polynomials for Even, Fully-π-bonded, Non-
alternant Hydrocarbons Which Have One NBMO

6. From equation (4), when a polynomial root is zero (one eigenfunction with

eigenvalue α), then an = 0.

7. From equation (5), an-1 is obtained as the sum of terms in which all of the roots save

one have been multiplied together. If only one root, say rf, is zero, then all of the

terms for an-1 vanish, except the one lacking the zero root, rf. Hence,

an-1 = (-r1)(-r2)...(-rf-1)(-rf+1)...(-rn) (11)

Thus when an = 0, an-1 has a definition analogous to the definition for an when an ╪ 0.

Argumentation analogous to that advanced earlier for an ╪ 0 systems leads to the

following conclusion: for an = 0 systems (one NBMO only), ∆, the difference in the

numbers of π-bonding and π-antibonding orbitals will be equal to the difference in the

numbers of 4J+3 and 4J+1 circuits in dominant (n-1)-site Sachs' subgraphs. Surplus

4J+3 circuits imply an excess of π-antibonding orbitals and surplus 4J+1 circuits imply

an excess of π-bonding orbitals.

Theorem



8. If any neutral hydrocarbon has unequal numbers of π-bonding and π-antibonding

MOs, where the difference between the numbers is ∆ and that same structure has U

NBMOs, then no NBMO can be a frontier orbital if ∆ > U.

9. Suppose such a structure has n vertices in its π system and an excess of ∆ π-bonding

orbitals. It will have TB bonding orbitals.

TB = ∆ + (n -∆ -U)(2-1)

= 2∆(2-1) + (n -∆ -U)(2-1)

= (n +∆ -U)(2-1) (12)

In general, such a structure will have n/2 occupied orbitals. If ∆ > U, TB > n/2 so that

the number of π-bonding orbitals will exceed the number of occupied orbitals. Thus,

both the HOMO and the LUMO will be π-bonding orbitals and no NBMO can be a

frontier orbital.

10. Suppose such a structure has n vertices in its π system and an excess of ∆ π-

antibonding orbitals. It will have a total of TB+NB π-bonding and non-bonding

orbitals.

TB+NB = U + (n -∆ -U)(2-1)

= 2U(2-1) + (n -∆ -U)(2-1)

= (n -∆ +U)(2-1) (13)



In general, such a structure will have n/2 occupied orbitals. If ∆ > U, TB+NB < n/2 so

that the number of occupied orbitals will exceed the total number of π-bonding and

NBMOs and at least one π-antibonding orbital will be occupied. Thus, both the

HOMO and the LUMO will be π-antibonding orbitals and no NBMO can be a

frontier orbital. Ergo, no NBMO can be a frontier orbital when ∆ > U.


