10.1071/CH02231_AC © CSIRO 2003 Accessory Publication: *Aust. J. Chem.*, 2003, 56(4), 301–307.

Supplementary material

The Formation of Fluorescent Alkaline Earth Complexes by 4-{2-[10-(2-Morpholinoethyl)-9-anthryl]methyl}morpholine and its -Ethyl}morpholine and -Propyl}morpholine Analogues in Acetonitrile

Jason P. Geue,^A *Nicholas J. Head*,^A *A. David Ward*^A *and Stephen F. Lincoln*^{A,B} ^ADepartment of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia

^BAuthor to whom correspondence should be addressed (e-mail

Stephen.Lincoln@adelaide.edu.au).

Fig. S1. The increase in emission of (1) $(3.00 \times 10^{-6} \text{ mol dm}^{-3})$ with $[\text{Ca}^{2+}] (1.00 \times 10^{-4} - 6.00 \times 10^{-3} \text{ mol dm}^{-3})$ in acetonitrile at $I = 0.05 \text{ mol dm}^{-3}$ (NEt₄ClO₄) and 298.2 K when excited at 378 nm. The emission of (1) alone coincides with the base line.

Fig. S2. The increase in emission of (2) $(3.00 \times 10^{-6} \text{ mol dm}^{-3})$ with $[Mg^{2+}] (5.00 \times 10^{-6} - 5.00 \times 10^{-3} \text{ mol dm}^{-3})$ in acetonitrile at $I = 0.05 \text{ mol dm}^{-3}$ (NEt₄ClO₄) and 298.2 K when excited at 365 nm. The lowest emission spectrum is that of (2) alone.

Fig. S3. The increase in emission of (2) $(3.00 \times 10^{-6} \text{ mol dm}^{-3})$ with $[\text{Sr}^{2+}] (1.00 \times 10^{-5} - 6.00 \times 10^{-3} \text{ mol dm}^{-3})$ in acetonitrile at $I = 0.05 \text{ mol dm}^{-3}$ (NEt₄ClO₄) and 298.2 K when excited at 378 nm. The lowest emission spectrum is that of (2) alone.

Fig. S4. The increase in emission of (2) $(3.00 \times 10^{-6} \text{ mol dm}^{-3})$ with $[\text{Ba}^{2+}]$ $(1.00 \times 10^{-5} - 6.00 \times 10^{-3} \text{ mol dm}^{-3})$ in acetonitrile at $I = 0.05 \text{ mol dm}^{-3}$ (NEt₄ClO₄) and 298.2 K when excited at 379 nm. The lowest emission spectrum is that of (2) alone.

Fig. S5. The increase in emission of (3) $(3.00 \times 10^{-6} \text{ mol dm}^{-3})$ with $[Mg^{2+}] (1.00 \times 10^{-6} - 8.00 \times 10^{-5} \text{ mol dm}^{-3})$ in acetonitrile at $I = 0.05 \text{ mol dm}^{-3}$ (NEt₄ClO₄) and 298.2 K when excited at 377 nm. The lowest emission spectrum is that of (3) alone.

Fig. S6. The increase in emission of (3) $(3.00 \times 10^{-6} \text{ mol dm}^{-3})$ with $[\text{Ca}^{2+}]$ $(5.00 \times 10^{-5} - 5.00 \times 10^{-3} \text{ mol dm}^{-3})$ in acetonitrile at $I = 0.05 \text{ mol dm}^{-3}$ (NEt₄ClO₄) and 298.2 K when excited at 378 nm. The lowest emission spectrum is that of (3) alone.

Fig. S7. The increase in emission of (3) $(3.00 \times 10^{-6} \text{ mol dm}^{-3})$ with $[\text{Ba}^{2+}]$ $(1.00 \times 10^{-4} - 6.00 \times 10^{-3} \text{ mol dm}^{-3})$ in acetonitrile at $I = 0.05 \text{ mol dm}^{-3}$ (NEt₄ClO₄) and 298.2 K when excited at 378 nm. The lowest emission spectrum is that of (3) alone.

Fig. S8. Emission variation of (3) $(3.00 \times 10^{-6} \text{ mol dm}^{-3})$ at 403 nm with increase in $[Mg^{2+}]$ in acetonitrile and I = 0.05 mol dm⁻³ (NEt₄ClO₄) and 298.2 K when excited at 377 nm. The solid curves represent the best fit of the algorithm for the formation of $[Mg(3)]^{2+}$ and $[Mg(3)']^{2+}$ and $[Mg_2(3)]^{4+}$ to the experimental data points over the range 390-490 nm.