Accessory Material

The formation of fluorescent alkali metal and alkaline earth complexes by 1-phenyl-4-(2-{10-[2-(4-phenylpiperazino)ethyl]-9-anthryl}ethyl)piperazine and alkaline earth complexes by 4-{2-[10-(2-morpholinoethyl)-9-anthryl]ethyl}thiomorpholine in acetonitrile

Jason P. Geue, Nicholas J. Head, A. David Ward and Stephen F. Lincoln*

Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia

Fig. S1. The increase in emission of (1) $(3.00 \times 10^{-6} \text{ mol dm}^{-3})$ with $[\text{Na}^+]_{\text{total}}$ $(1.00 \times 10^{-5} - 5.00 \times 10^{-3} \text{ mol dm}^{-3})$ in acetonitrile at $I = 0.05 \text{ mol dm}^{-3}$ (NEt₄ClO₄) and 298.2 K when excited at 378 nm. The lowest emission spectrum is that of (1) alone.

Fig. S2. The increase in emission of (1) $(3.00 \times 10^{-6} \text{ mol dm}^{-3})$ with [K⁺] $(5.00 \times 10^{-5} - 5.00 \times 10^{-3} \text{ mol dm}^{-3})$ in acetonitrile at $I = 0.05 \text{ mol dm}^{-3}$ (NEt₄ClO₄) and 298.2 K when excited at 377 nm. The lowest emission spectrum is that of (1) alone.

Fig. S3. The increase in emission of (1) $(3.00 \times 10^{-6} \text{ mol dm}^{-3})$ with [Rb⁺] $(5.00 \times 10^{-5} - 4.00 \times 10^{-3} \text{ mol dm}^{-3})$ in acetonitrile at $I = 0.05 \text{ mol dm}^{-3}$ (NEt₄ClO₄) and 298.2 K when excited at 377 nm. The lowest emission spectrum is that of (1) alone.

Fig. S4. The increase in emission of (1) $(3.00 \times 10^{-6} \text{ mol dm}^{-3})$ with [Mg²⁺] $(1.00 \times 10^{-6} - 1.00 \times 10^{-4} \text{ mol dm}^{-3})$ in acetonitrile at $I = 0.05 \text{ mol dm}^{-3}$ (NEt₄ClO₄) and 298.2 K when excited at 379 nm. The lowest emission spectrum is that of (1) alone.

Fig. S5. The increase in emission of (1) $(3.00 \times 10^{-6} \text{ mol dm}^{-3})$ with $[\text{Sr}^{2+}]$ $(1.00 \times 10^{-6} \text{-} 3.00 \times 10^{-3} \text{ mol dm}^{-3})$ in acetonitrile at $I = 0.05 \text{ mol dm}^{-3}$ (NEt₄ClO₄) and 298.2 K when excited at 377 nm. The lowest emission spectrum is that of (1) alone.

Fig. S6. The increase in emission of (1) $(3.00 \times 10^{-6} \text{ mol dm}^{-3})$ with $[\text{Ba}^{2+}]$ $(1.00 \times 10^{-6} \text{-} 3.00 \times 10^{-3} \text{ mol dm}^{-3})$ in acetonitrile at $I = 0.05 \text{ mol dm}^{-3}$ (NEt₄ClO₄) and 298.2 K when excited at 377 nm. The lowest emission spectrum is that of (1) alone.

Fig. S7. The increase in emission of (2) $(3.00 \times 10^{-6} \text{ mol dm}^{-3})$ with [Mg²⁺] $(1.00 \times 10^{-6} \text{-} 3.00 \times 10^{-3} \text{ mol dm}^{-3})$ in acetonitrile at $I = 0.05 \text{ mol dm}^{-3}$ (NEt₄ClO₄) and 298.2 K when excited at 377 nm. The lowest emission spectrum is that of (2) alone.

Fig. S8. The increase in emission of (2) $(3.00 \times 10^{-6} \text{ mol dm}^{-3})$ with $[\text{Sr}^{2+}]$ $(1.00 \times 10^{-5} - 6.00 \times 10^{-3} \text{ mol dm}^{-3})$ in acetonitrile at $I = 0.05 \text{ mol dm}^{-3}$ (NEt₄ClO₄) and 298.2 K when excited at 377 nm. The lowest emission spectrum is that of (2) alone.

Fig. S9. The increase in emission of (2) $(3.00 \times 10^{-6} \text{ mol dm}^{-3})$ with $[\text{Ba}^{2+}]$ $(5.00 \times 10^{-5} - 6.00 \times 10^{-3} \text{ mol dm}^{-3})$ in acetonitrile at $I = 0.05 \text{ mol dm}^{-3}$ (NEt₄ClO₄) and 298.2 K when excited at 377 nm. The lowest emission spectrum is that of (2) alone.