Supplementary Information:

Asymmetric Synthesis of (-)-Swainsonine

Karl B. Lindsay ${ }^{A}$ and Stephen G. Pyne ${ }^{A, B}$
${ }^{\text {A }}$ Department of Chemistry, University of Wollongong, Wollongong, NSW, 2522, Australia
${ }^{\text {B }}$ Author to whom correspondence should be addressed (e-mail spyne@uow.edu.au)

General Methods. All reactions were carried out under an atmosphere of nitrogen. Where necessary, reagents and solvents were purified according to methods contained in Purification of Laboratory Chemicals, 2nd ed. Perrin D.D., Amarego W.L.F., Perrin D.R., Pergamon Press Ltd., Oxford England (1981) or Practical Textbook of Organic Chemistry, 5th ed. Furnis B.S., Hannaford A.J., Smith P.W.G., Tatchell A.R., Longmann Scientific and Technical, London (1989). NMR spectra were obtained at either 300 or 500 MHz for ${ }^{1} \mathrm{H}$ NMR and 75 MHz for ${ }^{13} \mathrm{C}$ NMR on a Varian spectrometer and are referenced to the relevant solvent peak. Spectra are obtained as a CDCl_{3} solution unless otherwise stated. ${ }^{13} \mathrm{C}$ NMR assignments ($\mathrm{s}, \mathrm{d}, \mathrm{t}$ and q) were made from DEPT experiments. Silica gel chromatography was performed using Merck GF 254 flash silica gel packed by the slurry method. Small scale separations ($<2.0 \mathrm{~g}$) were performed using either a 10 mm or a 20 mm diameter column, and large scale separations ($>2.0 \mathrm{~g}$) were performed using a 50 mm diameter column, each with the stated solvent system. Melting points were obtained using a Gallenkamp MF-370 capillary tube melting point apparatus and are uncorrected. Specific rotations were measured using a 10 mm or a 50 mm cell, and a Jasco DIP-370 digital polarimeter. They are reported by the following convention: optical rotation $\left[10^{-1}\right.$. deg. $\left.\mathrm{cm}^{3} . \mathrm{g}^{-1}\right]$ (concentration, solvent). Mass spectra were obtained on a VG Quatro mass spectrometer (low resolution), and on a VG Autospec mass spectrometer (high resolution). In all cases exact masses were obtained in lieu of elemental analyses, and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy were used as criteria for purity.
(1R,7aS)-1-[3-[(4-Methoxyphenyl)methoxy]propyl]-5,7a-dihydro-1H,3H-pyrrolo[1,2-c]oxazol-3-one (11).

The carbamate 10 ($663 \mathrm{mg}, 1.643 \mathrm{mmol}$) was dissolved in toluene $(60 \mathrm{~mL})$ then NaH $(290 \mathrm{mg}, 6.04 \mathrm{mmol})$ was added. The mixture was stirred at $45^{\circ} \mathrm{C}$ for 18 h , then poured into water and extracted with EtOAc. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated in vacuo to give an oil. The pure product was obtained by column chromatography (increasing polarity from 5% to $30 \% \mathrm{Et}_{2} \mathrm{O}$ in DCM as eluant), which gave the title compound ($370 \mathrm{mg}, 1.220 \mathrm{mmol}, 74.2 \%$) as a clear oil.
$[\alpha]_{\mathrm{D}}{ }^{25}:-15\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$.
MS (CI+) m/z 304 (9 \%) (M+1) 302 (26 \%) (M-1), HRMS (EI+) found 303.1464, calc for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4} 303.1471(\mathrm{M}+1)$.
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.45-2.00\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime}\right.$ and $\left.\mathrm{H}^{\prime}\right), 3.38-3.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3{ }^{\prime}\right), 3.70-3.80$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5 \mathrm{a}), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.40\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 4.34-4.44(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5 \mathrm{~b}), 4.64-$ $4.76(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 1$ and $\mathrm{H} 7 a), 5.80-5.86(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 6), 5.98-6.04(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 7), 6.86(2 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=8.4 \mathrm{~Hz}, 2 \mathrm{x} \mathrm{ArCH}), 7.23(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, 2 \mathrm{x} \mathrm{ArCH})$.
$\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 25.8,28.9\left(\mathrm{t}, \mathrm{Cl}^{\prime}\right.$ and $\left.\mathrm{C} 2 '\right), 54.8(\mathrm{t}, \mathrm{C} 5), 55.2\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 68.3(\mathrm{~d}$, $\mathrm{C} 7 a), 68.9$ (t, C3'), 72.4 (t, $\mathrm{OCH}_{2} \mathrm{Ar}$), 78.5 (d, C1), 113.6 (d, $2 \times \mathrm{ArCH}$), 126.4 (d, C6), 129.0 ($\mathrm{d}, 2 \mathrm{x} \mathrm{ArCH}$), 130.2 (s, ArC), 131.4 (d, C7), 158.9 (s, ArC), 162.5 ($\mathrm{s}, \mathrm{C} 3$).
(1R,6R,7S,7aR)-1-[3-[(4-Methoxyphenyl)methoxy]propyl]-tetrahydro-6,7-dihydroxy-1H,3H-pyrrolo[1,2-c]oxazol-3-one (12) and (1R,6S,7R,7aR)-1-[3-[(4-methoxyphenyl)methoxy]propyl]-tetrahydro-6,7-dihydroxy-1H,3H-pyrrolo[1,2-c]oxazol-3-one (13).
The oxazolidinone $11(378 \mathrm{mg}, 1.246 \mathrm{mmol})$ was dissolved in acetone $(7 \mathrm{~mL})$ then water $(4.8 \mathrm{~mL})$, $\mathrm{NMO}(336 \mathrm{mg}, 2.866 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{OsO}_{4} .2 \mathrm{H}_{2} \mathrm{O}(24 \mathrm{mg}, 0.065 \mathrm{mmol})$ were added. The mixture was stirred at RT for 20 h , then all volatiles were removed in vacuo to give a black oil. Pure product was obtained by column chromatography (increasing polarity from 5% to $10 \% \mathrm{MeOH}$ in DCM as eluant), which gave the title compound ($356 \mathrm{mg}, 1.055 \mathrm{mmol}, 84.7 \%$) as a white solid. Two isomers were present in a $3: 1$ ratio. An analytical sample of the major isomer was isolated by preferential recrystallisation from hot DCM (40 mL) and pet. sp. (5-10 mL), which gave 177 mg as colourless needles.

Alternative method:

The oxazolidinone $\mathbf{1 1}(106 \mathrm{mg}, 0.349 \mathrm{mmol})$ was dissolved in acetone (3.3 mL) then $\mathrm{H}_{2} \mathrm{O}$ $(1.8 \mathrm{~mL})$, AD-mix- $\beta(492 \mathrm{mg}),(\mathrm{DHQD})_{2}$ PHAL ($11 \mathrm{mg}, ~ \mu 14 \mathrm{~mol}$) and methane sulfonamide ($66 \mathrm{mg}, 0.822 \mathrm{mmol}$) were added. The mixture was stirred at RT for 6 d , then $\mathrm{Na}_{2} \mathrm{SO}_{3}(1.5 \mathrm{~g})$ was added and the mixture stirred for 20 min . The mixture was poured into water $(40 \mathrm{~mL})$ and extracted with DCM $(3 \times 20 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated in vacuo gave a semi solid. Column chromatography (increasing polarity from 2% to $10 \% \mathrm{MeOH}$ in DCM as eluant) gave the mixture of title compounds ($54 \mathrm{mg}, 0.160 \mathrm{mmol}, 45.9 \%$) as a white solid, and recovered 11 ($48 \mathrm{mg}, 0.158 \mathrm{mmol}, 45.3 \%$) as a clear oil.

MS (CI+) m/z 338 (17 \%) (M+1), HRMS (EI+) found 337.1505, calc for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{6}$ $337.1525(\mathrm{M}+1)$.
12:
m.p. $146{ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{25}:-31.0\left(\mathrm{c} 1.77, \mathrm{CHCl}_{3}\right)$.
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.60-1.75(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{a}), 1.75-1.90\left(1 \mathrm{H}, \mathrm{H}^{2} \mathrm{~b}\right), 2.00-2.15(1 \mathrm{H}, \mathrm{m}$, H1'a), 2.15-2.30 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1 \mathrm{l} \mathrm{b}), 2.80(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{OH}), 3.10(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{OH}), 3.34-3.70(5 \mathrm{H}$, $\mathrm{m}, \mathrm{H} 5, \mathrm{H} 7 a$ and H 3 '), $3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.98(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{H} 6), 4.35-4.45(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 7)$, $4.40\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 4.59(1 \mathrm{H}$, app q, $J=7.1 \mathrm{~Hz}, \mathrm{H} 1), 6.86(2 \mathrm{H}, \mathrm{dt}, J=8.7,1.5 \mathrm{~Hz}, 2 \mathrm{x}$ $\mathrm{ArCH}), 7.23(2 \mathrm{H}, \mathrm{dt}, J=8.7,1.5 \mathrm{~Hz}, 2 \times \mathrm{ArCH})$.
$\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 26.3,26.4\left(\mathrm{t}, \mathrm{C}^{\prime}\right.$ and $\left.\mathrm{C} 2 '\right), 49.9(\mathrm{t}, \mathrm{C} 5), 55.2\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 65.1(\mathrm{~d}$, $\mathrm{C} 7 a), 69.3$ (t, C3'), 70.8 (d, C6), 72.6 (t, $\mathrm{OCH}_{2} \mathrm{Ar}$), 73.6 (d, C7), 76.7 (d, C1), 113.8 (d, 2 x ArCH), 129.3 (d, 2 x ArCH), 130.2 (s, ArC), 159.2 (s, ArC), 163.0 (s, C3).

13:

$\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: inter alia $25.5,26.5\left(\mathrm{t}, \mathrm{Cl}^{\prime}\right.$ and $\left.\mathrm{C} 2 '\right)$, $52.8(\mathrm{t}, \mathrm{C} 5)$, $55.2\left(\mathrm{q}, \mathrm{OCH}_{3}\right)$, 63.9 (d, C7a), 69.0 (t, C3'), 70.0 (d, C6), 70.9 (d, C7), 72.6 (t, OCH ${\underset{2}{2}}^{2} \mathrm{Ar}$), 76.2 (d, C1), 113.8 (d, $2 \times \operatorname{ArCH}$), 129.4 (d, $2 \times \mathrm{ArCH}$), 129.9 (s, ArC), 159.2 (s, ArC), 163.0 ($\mathrm{s}, \mathrm{C} 3$).
(1S,6R,7S,7aR)-Tetrahydro-1-[3-[(4-methoxyphenyl)methoxy]propyl]-6,7-bis(phenylmethoxy)-1H,3H-pyrrolo[1,2-c]oxazol-3-one (14) and (1S,6S,7R,7aR)-tetrahydro-1-[3-[(4-methoxyphenyl)methoxy]propyl]-6,7-bis(phenylmethoxy)-1H,3H-pyrrolo[1,2-c]oxazol-3-one (15).

The diol 12 ($177 \mathrm{mg}, 0.525 \mathrm{mmol}$) was dissolved in dry THF (15 mL) then sodium hydride ($75 \mathrm{mg}, 1.575 \mathrm{mmol}, 50 \%$ dispersion in paraffin wax), benzylbromide (0.24 mL , 2.00 mmol) and tetrabutylammoniumiodide ($38 \mathrm{mg}, 0.105 \mathrm{mmol}$) were added. The mixture was stirred at RT for 2 d then poured into water (50 mL) and extracted with DCM ($3 \times 25 \mathrm{~mL}$). The combined organic portions were dried $\left(\mathrm{MgSO}_{4}\right)$ filtered and evaporated in vacuo to give an oil. Pure product was obtained by column chromatography (increasing polarity from 30% to 80% EtOAc in pet. sp. as eluant), which gave the title compound ($272 \mathrm{mg}, 0.525 \mathrm{mmol}, 100 \%$) as a clear oil. When starting with a mixture of the diols $\mathbf{1 2}$ and $\mathbf{1 3}$, the mixture of products $\mathbf{1 4}$ and $\mathbf{1 5}$ may also be separated using this method.

14:

$[\alpha]_{\mathrm{D}}{ }^{23}:-17\left(\mathrm{c} 1.18, \mathrm{CHCl}_{3}\right)$.
MS (CI+) m/z 518 (25 \%) (M+1), HRMS (CI+) found 518.2524, calc for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{NO}_{6}$ $518.2543(\mathrm{M}+1)$.
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.50-1.92\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H} \mathrm{l}^{\prime} \mathrm{a}\right.$ and H 2 '), 1.98-2.14 ($\left.1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1^{\prime} \mathrm{b}\right), 3.32$ (1 H, ddd, J=9.3, 7.5, $5.4 \mathrm{~Hz}, \mathrm{H}^{\prime} \mathrm{a}$), 3.40-3.49 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 5 \mathrm{a}$ and H3'b), 3.58-3.67 (2H, m, H5b and H7a), $3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.96(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, \mathrm{H} 7), 4.19(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=8.4,2.7$ $\mathrm{Hz}, \mathrm{H} 6), 4.37\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 4.52-4.62\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 1\right.$ and $\left.1.5 \mathrm{x} \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.04(1 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{J}=11.7 \mathrm{~Hz}, 0.5 \times \mathrm{OCH}_{2} \mathrm{Ph}\right), 6.85(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=8.4,3.0 \mathrm{~Hz}, 2 \times \mathrm{ArCH}), 7.20(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=8.4$, $3.0 \mathrm{~Hz}, 2 \times \mathrm{ArCH}), 7.22-7.39\left(10 \mathrm{H}, \mathrm{m}, 2 \mathrm{x} \mathrm{OCH}_{2} \mathrm{Ph}\right)$.
$\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 26.1\left(\mathrm{t}, \mathrm{Cl}\right.$ '), $26.6(\mathrm{t}, \mathrm{C} 2 '), 48.3(\mathrm{t}, \mathrm{C} 5), 55.2\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 63.8(\mathrm{~d}$, $\mathrm{C} 7 a), 69.2$ (t, C3'), 72.5 ($\mathrm{t}, \mathrm{OCH}_{2} \mathrm{Ar}$), 72.6, 72.8 (t, $2 \times \mathrm{OCH}_{2} \mathrm{Ph}$), 76.2 (d, C7), 76.2 (d, C1), 82.4 (d, C6), 113.7 (d, $2 \times \mathrm{ArCH}$), 127.1, 127.3, 127.4, 128.0, 128.2, 128.5 (d, $2 \times$ $\mathrm{OCH}_{2} \mathrm{Ph}$), 129.2 (d, $\left.2 \times \mathrm{ArCH}\right), 130.4$ (s, ArC), 137.3, 137.9 ($\left.\mathrm{s}, 2 \times \mathrm{OCH}_{2} \mathrm{Ph}\right), 159.1(\mathrm{~s}$, $\mathrm{ArC}), 162.2$ (s, C3).

15:
$[\alpha]_{\mathrm{D}}{ }^{27}:+65\left(\mathrm{c} 1.25, \mathrm{CHCl}_{3}\right)$.
MS (ES+) $m / z 518.3(75 \%)(M+1)$, HRMS (ES+ + found 518.2565, calc for, $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{NO}_{6}$ $518.2543(\mathrm{M}+1)$.
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.50\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime}\right.$ and H^{\prime} '), $3.30-3.50\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 5 \mathrm{a}\right.$ and $\left.\mathrm{H} 3^{\prime}\right), 3.56$ ($1 \mathrm{H}, \mathrm{dd}, J=9.3,5.1 \mathrm{~Hz}, \mathrm{H} 7$), $3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.74-3.82$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5 \mathrm{~b}$), 4.04-4.14 (2 H , $\mathrm{m}, \mathrm{H} 6$ and $\mathrm{H} 7 a), 4.30-4.70\left(7 \mathrm{H}, \mathrm{m}, \mathrm{H} 5, \mathrm{OCH}_{2} \mathrm{Ar}\right.$ and $\left.2 \times \mathrm{OCH}_{2} \mathrm{Ph}\right), 6.84(2 \mathrm{H}, \mathrm{d}, J=8.4$ $\mathrm{Hz}, 2 \times \mathrm{ArCH})$, 7.18-7.38 ($12 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{ArCH}$ and $2 \times \mathrm{OCH}_{2} \mathrm{Ph}$).
$\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 26.2,27.0\left(\mathrm{t}, \mathrm{C}^{\prime}\right.$ 'and $\left.\mathrm{C} 2 '\right), 51.1(\mathrm{t}, \mathrm{C} 5), 55.2\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 62.9(\mathrm{~d}$, $\mathrm{C} 7 a), 69.0\left(\mathrm{t}, \mathrm{C} 3\right.$ '), 71.7, 71.9, $72.5\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{Ar}\right.$ and $\left.2 \mathrm{x} \mathrm{OCH}_{2} \mathrm{Ph}\right), 74.9,76.3,76.9(\mathrm{~d}, \mathrm{C} 1$, C6 and C7), 113.6 ($\mathrm{d}, 2 \mathrm{x}$ ArCH), 127.9, 128.0, 128.1, 128.1, 128.3, 128.4 (d, 2 x $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 129.0(\mathrm{~d}, 2 \times \mathrm{ArCH}), 130.3(\mathrm{~s}, \mathrm{ArC}), 136.5,137.0\left(\mathrm{~s}, 2 \times \mathrm{OCH}_{2} \mathrm{Ph}\right), 158.9(\mathrm{~s}$, $\mathrm{ArC}), 161.2$ ($\mathrm{s}, \mathrm{C} 3$).
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{d}_{6}\right.$-benzene): 1.45-1.70 $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 1^{\prime}\right.$ and $\left.\mathrm{H} 2^{\prime}\right), 3.10(1 \mathrm{H}, \mathrm{dd}, J=10.0,5.0$ $\mathrm{Hz}, \mathrm{H} 7$), 3.16-3.24 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H} 5 \mathrm{a}$ and H 3 '), $3.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) 3.52(1 \mathrm{H}, \mathrm{t}, J=5.0 \mathrm{~Hz}, \mathrm{H} 6)$, $3.74(1 \mathrm{H}, \mathrm{dd}, J=13.0,5.0 \mathrm{~Hz}, \mathrm{H} 5 \mathrm{~b}), 3.82(1 \mathrm{H}, \mathrm{dd}, J=9.0,7.5 \mathrm{~Hz}, \mathrm{H} 7 a), 4.00-4.28(7 \mathrm{H}, \mathrm{m}$, $\mathrm{H} 1, \mathrm{OCH}_{2} \mathrm{Ar}$ and $\left.2 \times \mathrm{OCH}_{2} \mathrm{Ph}\right), 6.76(2 \mathrm{H}, \mathrm{dt}, J=9.0,2.0 \mathrm{~Hz}, 2 \times \mathrm{ArCH}), 7.10-7.22(12 \mathrm{H}$, $\mathrm{m}, 2 \mathrm{x} \mathrm{ArCH}$ and $2 \mathrm{x} \mathrm{OCH}_{2} \underline{\mathrm{Ph}}$).
$\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{d}_{6}\right.$-benzene): $26.8,27.6\left(\mathrm{t}, \mathrm{Cl}^{\prime}\right.$ and $\left.\mathrm{C} 2^{\prime}\right), 51.9(\mathrm{t}, \mathrm{C} 5), 54.9\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 63.2$ (d, C7a), $69.5(\mathrm{t}, \mathrm{C} 3 '), 71.7,72.1,72.8\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{Ar}\right.$ and $\left.2 \mathrm{x} \mathrm{OCH}_{2} \mathrm{Ph}\right), 75.8,76.1,78.4(\mathrm{~d}$, C1, C6 and C7), 114.1 (d, $2 \times \mathrm{ArCH}$), 127.9, 128.0, 128.0, 128.1, 128.6, 128.6 (d, $2 \times$ $\mathrm{OCH}_{2} \mathrm{Ph}$), $129.4(\mathrm{~d}, 2 \times \mathrm{ArCH}), 131.2(\mathrm{~s}, \mathrm{ArC}), 138.1,138.3\left(\mathrm{~s}, 2 \times \mathrm{OCH}_{2} \mathrm{Ph}\right), 159.6(\mathrm{~s}$, $\mathrm{ArC}), 161.4$ (s, C3).

(2R,3S,4R)-2-[(1R)-1-Hydroxy-4-[(4-methoxyphenyl)methoxy]butyl]-3,4-

bis(phenylmethoxy)pyrrolidine (17).

The oxazolidinone 14 ($410 \mathrm{mg}, 0.792 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(8 \mathrm{~mL}), \mathrm{NaOH}$ $(200 \mathrm{mg}, 5.00 \mathrm{mmol})$ dissolved in water $(2 \mathrm{~mL})$ was added. The mixture was placed in a teflon tube with a 100 bar pressure cap, then heated in a microwave reactor at $110{ }^{\circ} \mathrm{C}$ for 2 h . After cooling the mixture was poured into water (50 mL), then extracted with DCM (3 x 30 mL). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and
evaporated in vacuo to give an oil. The pure product was obtained by column chromatography (increasing polarity from 5% to $15 \% \mathrm{MeOH}$ in DCM as eluant), which gave the title compound ($326 \mathrm{mg}, 0.663 \mathrm{mmol}, 83.7 \%$) as a clear oil.
$[\alpha]_{\mathrm{D}}{ }^{24}:-25\left(\mathrm{c} 3.26, \mathrm{CHCl}_{3}\right)$.
MS (CI+) m/z 492 (100 \%) (M+1), HRMS (CI+) found 492.2769, calc for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{NO}_{5}$ $492.2750(\mathrm{M}+1)$.
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.40-1.54(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 ' \mathrm{a}), 1.60-1.90\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime} \mathrm{b}\right.$ and H^{\prime} '), 2.70 (2 H , br. s, NH and OH), $2.98(1 \mathrm{H}, \mathrm{dd}, J=6.3,4.8 \mathrm{~Hz}, \mathrm{H} 2), 3.08(1 \mathrm{H}, \mathrm{dd}, J=11.1,6.6 \mathrm{~Hz}$, H5a), 3.18 ($1 \mathrm{H}, \mathrm{dd}, J=11.1,6.6 \mathrm{~Hz}, \mathrm{H} 5 \mathrm{~b}$), $3.40\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 4\right.$ '), 3.78 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), 3.74$3.82(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1 '), 4.00-4.10(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4), 4.15(1 \mathrm{H}, \mathrm{t}, J=4.2 \mathrm{~Hz}, \mathrm{H} 3), 4.43(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.56\left(2 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.62\left(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.90$ ($1 \mathrm{H}, \mathrm{d}, J=11.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{Ph}$), 6.87 ($2 \mathrm{H}, \mathrm{dt}, J=8.7,2.1 \mathrm{~Hz}, 2 \mathrm{x} \mathrm{ArCH}$), 7.22-7.38 (12H, m, 2 x ArCH and $2 \times \mathrm{OCH}_{2} \mathrm{Ph}$).
$\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 26.0,31.6\left(\mathrm{t}, \mathrm{C}^{\prime}\right.$ and $\left.\mathrm{C} 3^{\prime}\right), 48.2(\mathrm{t}, \mathrm{C} 5), 55.1\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 63.4(\mathrm{~d}$, $\mathrm{C} 2), 69.9$ (t, C^{\prime}), 71.1 (d, C1'), 71.9, 72.3, 73.4 ($\mathrm{t}, \mathrm{OCH}_{2} \mathrm{Ar}$ and $2 \times \mathrm{OCH}_{2} \mathrm{Ph}$), 79.4 (d, C3), 80.1 (d, C4), 113.6 (d, $2 \times \mathrm{ArCH}$), 127.4, 127.6, 127.8, 128.0, 128.3, 128.4 (d, 2 x $\left.\mathrm{OCH}_{2} \underline{\mathrm{Ph}}\right), 129.1(\mathrm{~d}, 2 \times \mathrm{ArCH}), 130.4(\mathrm{~s}, \mathrm{ArC}), 137.8\left(\mathrm{~s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 137.9\left(\mathrm{~s}, \mathrm{OCH}_{2} \mathrm{Ph}\right)$, 159.0 (s, ArC).

(2R,3S,4S)-2-[(1R)-1-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]-4-[(4-

 methoxyphenyl)methoxy]butyl]-3,4-bis(phenylmethoxy)pyrrolidine (18).The amino alcohol 17 ($326 \mathrm{mg}, 0.663 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(8 \mathrm{~mL})$, then imidazole ($100 \mathrm{mg}, 1.441 \mathrm{mmol}$) and tert-butyldimethylsilylchloride ($255 \mathrm{mg}, 0.928$ mmol) were added. The mixture was heated in a sealed tube at $65^{\circ} \mathrm{C}$ for 3 d , then poured into sat. NaHCO_{3} solution (50 mL) and extracted with DCM ($3 \times 30 \mathrm{~mL}$). The combined organic portions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated in vacuo to give an oil. Pure product was obtained by column chromatography (increasing polarity from 2.5% to $7.5 \% \mathrm{MeOH}$ in DCM as eluant), which gave the title compound ($469 \mathrm{mg}, 0.642 \mathrm{mmol}$, 96.9 \%) as a clear gum.
$[\alpha]_{\mathrm{D}}{ }^{24}:+3\left(\mathrm{c} 1.2, \mathrm{CHCl}_{3}\right)$.

MS (ES+) $m / z 730.3(25 \%)(\mathrm{M}+1)$, HRMS (ES+) found 730.3942, calc for $\mathrm{C}_{46} \mathrm{H}_{56} \mathrm{NO}_{5} \mathrm{Si}$ 730.3928 (M+1).
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.04\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 1.40-1.60\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 2{ }^{\prime}\right.$ and $\left.\mathrm{H}^{\prime}\right), 1.86$ (1 H, br. s, NH), 3.02-3.16 (5H, m, H2, H5 and H4'), $3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, 4.04-4.15 (2 H , $\mathrm{m}, \mathrm{H} 3$ and H 4$), 4.12\left(1 \mathrm{H}, \mathrm{d}, J=11.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.20-4.28(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1$ '), $4.29(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.56\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 4.91\left(1 \mathrm{H}, \mathrm{d}, J=11.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 6.87(2 \mathrm{H}, \mathrm{dt}, J=9.0$, $2.7 \mathrm{~Hz}, 2 \times \mathrm{ArCH}), 7.16-7.44\left(18 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{ArCH}, 2 \times \mathrm{OCH}_{2} \mathrm{Ph}, \mathrm{Ph}_{2} \mathrm{Si}\right), 7.64-7.70(4 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{Ph}_{2} \mathrm{Si}\right)$.
$\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 19.4\left(\mathrm{~s},\left(\mathrm{CH}_{3}\right)_{3} \underline{\mathrm{CSi}}\right), 24.1\left(\mathrm{t}, \mathrm{C} 3^{\prime}\right), 27.1\left(\mathrm{q},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 30.1(\mathrm{t}$, C2'), 48.2 (t, C5), $55.2\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 64.2$ (d, C2), 70.2 (t, C4'), 71.3 (d, C1'), 72.2 (t, $\left.\mathrm{OCH}_{2} \mathrm{Ar}\right), 72.3\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 72.5\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 77.1,82.3(\mathrm{~d}, \mathrm{C} 3$ and C 4$), 113.6(\mathrm{~d}, 2 \mathrm{x}$ ArCH), 127.0, 127.3, 127.4, 127.4, 127.5, 127.9, 128.3 (d, Ph), 129.1 (d, $2 \times \mathrm{ArCH}$), 129.4, 129.4 (d, Ph), 130.7 (s, ArC), 133.9, 134.8 (s, SiPh), 135.9, 136.0 (d, SiPh), 138.2, $139.1\left(\mathrm{~s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 159.0(\mathrm{~s}, \mathrm{ArC})$.

($\delta R, 2 S, 3 S, 4 R)-\delta-[[(1,1-D i m e t h y l e t h y l) d i p h e n y l s i l y l] o x y]-3,4-b i s(p h e n y l m e t h o x y)-2-$

 pyrrolidinebutanol (19).The PMB ether 18 ($484 \mathrm{mg}, 0.663 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(25 \mathrm{~mL})$, then water (3.2 mL) and CAN ($728 \mathrm{mg}, 1.325 \mathrm{mmol}$) were added. The mixture was stirred at RT for 2 h , then more CAN ($350 \mathrm{mg}, 0.637 \mathrm{mmol}$) was added. The mixture was stirred at RT for 1 h , then poured into sat. NaHCO_{3} solution (75 mL) and extracted with DCM (3 x 40 $\mathrm{mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated in vacuo to give an oil. The pure product was obtained by column chromatography (increasing polarity from 7.5% to $20 \% \mathrm{MeOH}$ in DCM as eluant), which gave the title compound ($371 \mathrm{mg}, 0.608 \mathrm{mmol}, 91.8 \%$) as a white foam.
m.p. $38-40^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{24}:+12\left(\mathrm{c} 3.7, \mathrm{CHCl}_{3}\right)$.
MS (CI+) m/z $610(83 \%)(\mathrm{M}+1)$, HRMS (CI+) found 610.3357, calc for $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{NO}_{4} \mathrm{Si}$ $610.3353(\mathrm{M}+1)$.
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.07\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 1.20-1.64(4 \mathrm{H}, \mathrm{m}, \mathrm{C} 2 \mathrm{l}$ and $\mathrm{C} 3 '), 3.00-$ $3.44(7 \mathrm{H}, \mathrm{m}, \mathrm{C} 2, \mathrm{C} 5, \mathrm{C} 1 ', \mathrm{NH}$ and 2 x OH$), 4.03\left(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.10-4.20$
($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3$ and H4), $4.28\left(1 \mathrm{H}\right.$, br. d, $\left.J=8.1 \mathrm{~Hz}, \mathrm{H} 4{ }^{\prime}\right), 4.56\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.91(1 \mathrm{H}, \mathrm{d}$, $\left.J=10.8 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 7.10-7.44\left(16 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2} \mathrm{Ph}, \mathrm{Ph}_{2} \mathrm{Si}\right), 7.65(4 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}$, $\left.\mathrm{Ph}_{2} \mathrm{Si}\right)$.
$\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 19.3\left(\mathrm{~s},\left(\mathrm{CH}_{3}\right)_{3} \underline{\mathrm{CSi}}\right), 26.0\left(\mathrm{t}, \mathrm{C} 2{ }^{\prime}\right), 27.0\left(\mathrm{q},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 29.9(\mathrm{t}$, C3'), 47.7 ($\mathrm{t}, \mathrm{C} 5$), 62.1 ($\mathrm{t}, \mathrm{C} 1$ '), 64.2 ($\mathrm{d}, \mathrm{C} 2$), 70.0 ($\mathrm{d}, \mathrm{C} 4$ '), 72.4 ($\mathrm{t}, \mathrm{OCH}_{2} \mathrm{Ph}$), 72.5 (t , $\mathrm{OCH}_{2} \mathrm{Ph}$), 76.7, 82.1 (C 3 and C4), 127.1, 127.4, 127.4, 127.4, 127.5, 127.7, 128.0, 128.3, $129.5,129.6$ (d, Ph), 133.5, 124.3 (s, SiPh), 135.9, 136.0 (d, SiPh), 137.8, 138.8 $\left(\mathrm{OCH}_{2} \underline{\mathrm{Ph}}\right)$.

(1S,2R,8R,8aS)-Octahydro-1,2-bis(phenylmethoxy)-8-[[(1,1-

dimethylethyl)diphenylsilyl]oxy]-indolizine (20).
The amino alcohol 19 ($359 \mathrm{mg}, 0.588 \mathrm{mmol}$) was dissolved in DCM (25 mL), then the solution was cooled to $0{ }^{\circ} \mathrm{C}$. Carbontetrabromide ($500 \mathrm{mg}, 1.476 \mathrm{mmol}$) and triphenylphosphine ($379 \mathrm{mg}, 1.471 \mathrm{mmol}$) were added. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min then triethylamine $(4.0 \mathrm{~mL}, 28.7 \mathrm{mmol})$ was added. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h , then left to stand at $4^{\circ} \mathrm{C}$ for 20 h , before it was poured into water (60 mL) and extracted with DCM ($3 \times 30 \mathrm{~mL}$). The combined organic portions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated in vacuo to give a black semi-solid. Pure product was obtained by column chromatography (increasing polarity from 5% to 30% EtOAc in pet. sp. as eluant), which gave the title compound ($325 \mathrm{mg}, 0.549 \mathrm{mmol}, 93.4 \%$) as a clear gum.
$[\alpha]_{\mathrm{D}}{ }^{27}:-10\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$.
MS (CI+) m/z $592(100 \%)(M+1)$, HRMS (CI+) found 592.3256, calc for $\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{NO}_{3} \mathrm{Si}$ 592.3247 (M+1).
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.07\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 1.05-1.26(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 7 \mathrm{a}), 1.34-1.48(2 \mathrm{H}$, $\mathrm{m}, \mathrm{H} 6), 1.70-1.90(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 5 \mathrm{a}$ and H7b), $2.10(1 \mathrm{H}, \mathrm{dd}, J=8.7,3.3 \mathrm{~Hz}, \mathrm{H} 8 a), 2.47(1 \mathrm{H}$, dd, $J=9.6,8.1 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{a}), 2.90(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}, \mathrm{H} 5 \mathrm{~b}), 3.24(1 \mathrm{H}, \mathrm{dd}, J=9.9,3.3 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{~b})$, 4.12-4.24 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2$ and H8), $4.33(1 \mathrm{H}, \mathrm{dd}, J=5.1,3.3 \mathrm{~Hz}, \mathrm{H} 1), 4.43(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.56\left(2 \mathrm{H}, \mathrm{AB}\right.$ system, $\left.J=12.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.87(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 7.16-7.48\left(16 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2} \underline{\mathrm{Ph}}\right.$ and $\left.\mathrm{Ph}_{2} \mathrm{Si}\right), 7.69(2 \mathrm{H}, \mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}$, $\mathrm{PhSi}), 7.73$ (2H, dd, $J=7.8,1.2 \mathrm{~Hz}, \mathrm{PhSi})$.
$\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 19.1\left(\mathrm{~s},\left(\mathrm{CH}_{3}\right)_{3} \underline{\mathrm{CSi}}\right), 23.5(\mathrm{t}, \mathrm{C} 6), 27.0\left(\mathrm{q},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSi}\right), 34.1(\mathrm{t}, \mathrm{C} 7)$, $52.2(\mathrm{t}, \mathrm{C} 5), 58.1(\mathrm{t}, \mathrm{C} 3), 68.8(\mathrm{~d}, \mathrm{C} 8), 71.9\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 73.1(\mathrm{~d}, \mathrm{C} 8 a), 74.0(\mathrm{t}$, $\mathrm{OCH}_{2} \mathrm{Ph}$), 77.7 (d, C2), 78.0 (d, C1), 126.9, 127.2, 127.4, 127.6, 127.7, 128.2, 129.3, 129.4 (d, Ph), 134.4, 134.7 (s, PhSi), 135.7, 135.8 (d, PhSi), 138.2, 138.8 (s, $\mathrm{OCH}_{2} \mathrm{Ph}$).
($1 S, 2 R, 8 R, 8 a R$)-Octahydro-8-hydroxy-1,2-bis(phenylmethoxy)indolizine (21).
The indolizidine 20 ($325 \mathrm{mg}, 0.549 \mathrm{mmol}$) was dissolved in dry THF (20 mL) then dry TBAF ($300 \mathrm{mg}, 1.147 \mathrm{mmol}$) was added. The mixture was stirred at RT for 3 d , then TBAF ($120 \mathrm{mg}, 0.459 \mathrm{mmol}$) was added. The mixture was stirred at RT for 2 d , then poured into water $(80 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(4 \times 40 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated in vacuo to give an oil. The pure product was obtained by column chromatography (increasing polarity from 5% to 15% MeOH in DCM as eluant), which gave the title compound ($147 \mathrm{mg}, 0.416 \mathrm{mmol}, 75.8 \%$) as a colourless solid.
m.p. $78-80^{\circ} \mathrm{C}$.
$[\alpha]_{\mathrm{D}}{ }^{23}:-103\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$.
MS (CI+) m/z 354 (100%) (M+1), HRMS (CI+) found 354.2083, calc for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{3}$ $354.2069(\mathrm{M}+1)$.
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.12(1 \mathrm{H}, \mathrm{qd}, J=12.6,4.5 \mathrm{~Hz}, \mathrm{H} 7 \mathrm{a}), 1.50-1.76(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 6), 1.80-$ $2.02(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 5 \mathrm{a}, \mathrm{H} 7 \mathrm{~b}$ and $\mathrm{H} 8 a), 2.12(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{OH}), 2.42(1 \mathrm{H}, \mathrm{dd}, J=10.2,7.2 \mathrm{~Hz}$, H3a), $2.91(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, J=10.5 \mathrm{~Hz}, \mathrm{H} 5 \mathrm{~b}), 3.20(1 \mathrm{H}, \mathrm{dd}, J=10.2,3.0 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{~b}), 3.90(1 \mathrm{H}$, ddd, $J=11.1,8.7,4.5 \mathrm{~Hz}, \mathrm{H} 8), 4.00-4.12(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 1$ and H 2$), 4.49(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.54\left(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.59\left(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.88$ $\left(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 7.22-7.40\left(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2} \mathrm{Ph}\right)$.
$\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 23.0(\mathrm{t}, \mathrm{C} 6), 32.3(\mathrm{t}, \mathrm{C} 7), 51.4(\mathrm{t}, \mathrm{C} 5), 57.8(\mathrm{t}, \mathrm{C} 3), 66.4(\mathrm{~d}, \mathrm{C} 8)$, 71.7 ($\mathrm{t}, \mathrm{OCH}_{2} \mathrm{Ph}$), $72.0(\mathrm{~d}, \mathrm{C} 8 a), 73.3$ ($\mathrm{t}, \mathrm{OCH}_{2} \mathrm{Ph}$), 76.7, 76.8 ($\mathrm{d}, \mathrm{C} 1$ and C 2), 127.3, $127.5,127.6,128.0,128.1,128.3\left(\mathrm{~d}, \mathrm{OCH}_{2} \underline{\mathrm{Ph}}\right), 138.0,138.52\left(\mathrm{~s}, \mathrm{OCH}_{2} \underline{\mathrm{Ph}}\right)$.
($1 S, 2 R, 8 R, 8 a R)$-Octahydro-1,2,8-indolizinetriol ((-)-swainsonine).
The indolizidine 21 ($147 \mathrm{mg}, 0.416 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ then PdCl_{2} ($59 \mathrm{mg}, 0.333 \mathrm{mmol}$) was added. The mixture was stirred under an atmosphere of H_{2} at

RT for 2 h , then the flask was flushed with N_{2} before the mixture was filtered through celite. The solids were washed with $\mathrm{MeOH}(3 \times 10 \mathrm{~mL}$), then the filtrates were evaporated in vacuo. The residue was dissolved in water (2 mL) and applied to Dowex-1 basic ion-exchange resin (OH form), and eluted with water. Evaporation of the eluant afforded (-)-swainsonine ($67 \mathrm{mg}, 0.387 \mathrm{mmol}, 93.0 \%$) as a colourless solid.
$[\alpha]_{\mathrm{D}}{ }^{26}:-71(\mathrm{c} 0.56, \mathrm{MeOH})$.
MS (CI+) m/z 174 (100 \%) (M+1), HRMS (ES+) found 174.1186, calc for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{NO}_{3}$ $174.1130(\mathrm{M}+1)$.
$\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): 1.13(1 \mathrm{H}, \mathrm{qd}, J=12.6,4.8 \mathrm{~Hz}, \mathrm{H} 7 \mathrm{a}), 1.41(1 \mathrm{H}, \mathrm{qt}, J=13.5,4.2 \mathrm{~Hz}$, H6a), 1.62 (1 H, br. d, $J=13.6 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{~b}$), 1.82 (1 H , dd, $J=7.8,3.9 \mathrm{~Hz}, \mathrm{H} 8 a$), 1.85-2.00 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 5 \mathrm{a}, \mathrm{H} 7 \mathrm{~b}$), 2.46 ($1 \mathrm{H}, \mathrm{dd}, J=11.1,7.8 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{a}$), 2.75-2.85 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3 \mathrm{~b}, \mathrm{H} 5 \mathrm{~b}$), 3.69 (1 H , ddd, $J=11.1,9.6,4.8 \mathrm{~Hz}, \mathrm{H} 8$), 4.15 (1 H , dd, $J=6.0,3.9 \mathrm{~Hz}, \mathrm{H} 1$), 4.24 (1 H , ddd, $J=8.1,6.0,2.4 \mathrm{~Hz}, \mathrm{H} 2)$.
$\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): 22.2(\mathrm{t}, \mathrm{C} 6), 31.5(\mathrm{t}, \mathrm{C} 7), 50.6(\mathrm{t}, \mathrm{C} 5), 59.7(\mathrm{t}, \mathrm{C} 3), 65.2(\mathrm{~d}, \mathrm{C} 8), 67.9$ (C2), 68.5(C1), 71.8 (d, C8a).

