## Electronic Supporting Information

Concerning the Proposed Structure of ( + )-Laurobtusol: Spectral Discrepancies with the Synthetic, Racemic Stereoisomers

Joanne T. Blanchfield, ${ }^{\text {A }}$ Sharon Chow, ${ }^{\text {A }}$ Paul V. Bernhardt, ${ }^{\text {A }}$ Colin H. L. Kennard ${ }^{\mathrm{A}}$ and William Kitching ${ }^{\mathrm{A}, \mathrm{B}}$
${ }^{\text {A }}$ Department of Chemistry, School of Molecular and Microbial Sciences, University of Queensland, Brisbane 4072, Australia.
${ }^{B}$ Author to whom correspondence should be addressed (email: w.kitching@ uq.edu.au).

## General experimental Procedures

NMR spectra were obtained with Bruker AV400, DRX500 and DRX750 spectrometers, using $\mathrm{CDCl}_{3}$ as solvent, and referenced to residual solvents at $\delta_{\mathrm{H}} 7.24$ and $\delta_{\mathrm{C}} 77.0$. The GCMS were recorded on a Shimadzu QP5100 gas chromatography mass spectrometer at 70 eV , using a J \& W Scientific DB-5 column. The spectrometer was programmed as $100^{\circ} \mathrm{C}$ for 2 minutes, then with temperature increased at a rate of $16^{\circ} \mathrm{C} /$ minute until $250^{\circ} \mathrm{C}$. Microanalyses were performed on the Elemental Analyzer Model 1106 from Elemental Microanalysis Limited. Melting points were recorded with a Buchi Schmelzpunktbestimmungs apparatus, and were uncorrected. HPLC separations were performed using either an analytical or a preparative conventional silica column with solvent systems indicated in the relevant sections of the text. Solvents were degassed by vacuum filtering prior usage. A Gilson (Model 131) refractive index detector was used. Flash chromatography was carried out using Merck Kieselgel 60 (230-400 mesh) or Scharlau silica gel (200-400 mesh) under positive pressure from a compressed air line.

GC trace of the synthetic mixture ( $\mathbf{1 5}, \mathbf{1 6}, 26$ and 27 ) from the cyclopropanation


## EIMS

Mass spectrum of $\mathbf{1 5}$ (major isomer).


Mass spectrum of $\mathbf{1 6}$ (major isomer).


Mass spectrum of 26/27 (minor isomer).


Mass spectrum of 27/26 (minor isomer).


Mass spectrum of natural laurobtusol. Courtesy of Professor S. Caccamese.


## Crystal Data

1a,4,6,6-Tetramethyl-octahydro-cyclopropa[d]naphthalen-8-one 13: $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3}, M 264.35$, $T 296 \mathrm{~K}$, triclinic, space group $P 2_{1} / c$ (No. 14), a 10.125(4) $\AA, 16.365(2) \AA, c$ $15.575(5) \AA, \beta 90.41(2)^{\mathrm{o}}, V 2581(1) \mathrm{X}^{3}, D_{\mathrm{c}}(\mathrm{Z}=8) 1.134 \mathrm{~g} \mathrm{~cm}^{-3}, F(000) 976, \mu(\mathrm{MoK} \alpha)$ $0.68 \mathrm{~cm}^{-1}, 4382$ unique data ( $2 \theta_{\max } 50 \mathrm{E}$ ), 711 with $I>2 \sigma(I) ; R 0.1068$ (obs. data), $w R_{2}$ 0.3762 (all data), goodness of fit 0.911 (CCDC number 237188).

4,7,7-trimethyl-5-oxo-1,2,3,5,6,7,8,8a-octahydro-naphthalene-1-carboxylic acid ethyl ester (cis (1,8a) isomer) 20: $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3}, M 264.35, T 296 \mathrm{~K}$, triclinic, space group $P \overline{1}$ (No. 2), $a 6.1785(9) \AA, b 8.919(2) \AA, c 14.228(2) \mathrm{X}, \alpha 77.44(1)^{\circ}, \beta 81.83(1)^{\circ}, \gamma 82.13(1)^{\circ}, V$ $752.9(2) \mathrm{X}^{3}, D_{\mathrm{c}}(\mathrm{Z}=2) 1.166 \mathrm{~g} \mathrm{~cm}^{-3}, F(000) 288, \mu(\mathrm{Mo} \mathrm{K} \alpha) 0.79 \mathrm{~cm}^{-1}, 2621$ unique data ( $2 \theta_{\max } 50 \mathrm{E}$ ), 796 with $I>2 \sigma(I) ; R 0.0964$ (obs. data), $w R_{2} 0.4065$ (all data), goodness of fit 1.043 (CCDC number 235971).

4,7,7-trimethyl-5-oxo-1,2,3,5,6,7,8,8a-octahydro-naphthalene-1-carboxylic acid ethyl ester (trans (1,8a) isomer) 21: $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3}, M 264.35, T 296 \mathrm{~K}$, orthorhombic, space group Pbca (No. 61), a 9.5928(5) Å, b 16.996(2) Å, c 19.915(2) X, V 3246.9(5) $\mathrm{X}^{3}, D_{\mathrm{c}}(\mathrm{Z}=8)$ $1.082 \mathrm{~g} \mathrm{~cm}^{-3}, F(000) 1152, \mu(\mathrm{Mo} \mathrm{K} \alpha) 0.73 \mathrm{~cm}^{-1}, 2651$ unique data $\left(2 \theta_{\max } 50 \mathrm{E}\right), 709$ with $I>2 \sigma(I) ; R 0.0659$ (obs. data), $w R_{2} 0.2789$ (all data), goodness of fit 0.948 (CCDC number 235970).

1a,6,6-Trimethyl-8-oxo-decahydro-cyclopropa[d]naphthalene-4-carboxylic acid ethyl ester (trans (1a,4) isomer) 23: $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{3}, M 278.38, T 296 \mathrm{~K}$, monoclinic, space group $C 2 / c$ (No. 15), $a$ 16.237(7) $\AA, b$ 9.6564(8) $\AA$, $c$ 22.98(1) X, $\beta$ 114.72(2) ${ }^{\circ}, V 3273(2) \mathrm{X}^{3}$, $D_{\mathrm{c}}(\mathrm{Z}=8) 1.130 \mathrm{~g} \mathrm{~cm}^{-3}, F(000) 1216, \mu(\mathrm{Mo} \mathrm{K} \alpha) 0.76 \mathrm{~cm}^{-1}, 2879$ unique data $\left(2 \theta_{\max }\right.$ 50 E ), 1159 with $I>2 \sigma(I) ; R 0.0569$ (obs. data), $w R_{2} 0.2004$ (all data), goodness of fit 1.027 (CCDC number 235975).

3,3,5,8-Tetramethyl-1,2,3,4,4a,5,6,7-octahydro-naphthalen-1-ol (cis (1,4a), trans (1,5) isomer) 12: $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}, M$ 208.33, $T 153 \mathrm{~K}$, triclinic, space group $P \overline{1}$ (No. 2), a 10.108(2) $\AA, b 11.933(3) \AA, c 12.159(2) \mathrm{X}, \alpha 82.57(2)^{\circ}, \beta 66.74(1)^{\circ}, \gamma 77.36(2)^{\circ}, V 1303.4(5) \mathrm{X}^{3}$,
$D_{\mathrm{c}}(\mathrm{Z}=4) 1.062 \mathrm{~g} \mathrm{~cm}^{-3}, F(000) 464, \mu(\mathrm{Mo} \mathrm{K} \alpha) 0.64 \mathrm{~cm}^{-1}, 4579$ unique data $\left(2 \theta_{\max } 50 \mathrm{E}\right)$, 3374 with $I>2 \sigma(I) ; R 0.0555$ (obs. data), $w R_{2} 0.1681$ (all data), goodness of fit 1.031 (CCDC number 235974).

Intensity data were collected on an Enraf-Nonius CAD4 four-circle diffractometer using graphite monochromated Mo-K $\alpha$ radiation ( $\lambda 0.71073 \AA$ ) in the $\omega-2 \theta$ scan mode. Lattice dimensions were determined by a least squares fit of the setting parameters of 25 independent reflections. For the structure of 3,3,5,8-tetramethyl-1,2,3,4,4a,5,6,7-octahydro-naphthalen-1-ol, crystal instability necessitated data collection at 153 K , employing an Oxford Cryostream Cooler. All other data sets were acquired at room temperature. Data reduction, decay correction and empirical absorption corrections ( $\psi-$ scans) were performed with the WINGX package. ${ }^{[1]}$ Structures were solved by direct methods with SHELXS and refined by full matrix least squares analysis with SHELXL97. ${ }^{[2]}$ All non-H atoms were refined with anisotropic thermal parameters, except disordered ethoxyl group C -atoms in the structures of 4,7,7-trimethyl-5-oxo-1,2,3,5,6,7,8,8a-octahydro-naphthalene-1-carboxylic acid ethyl ester (trans isomer) and 1a,6,6-trimethyl-8-oxo-decahydro-cyclopropa[d]naphthalene-4-carboxylic acid ethyl ester. All H -atoms were constrained at estimated positions using a riding model. Molecular structures were drawn with non-H atoms at the $30 \%$ probability level with ORTEP3. ${ }^{[3]}$ Crystallographic data in CIF format are available from the Cambridge Crystallographic Data Base and the Australian Jounal of Chemistry, PO Box 1139, Collingwood, Vic, 3006 (until 31 December 2005).

## References

[1] L. J. Farrugia, J. Appl. Cryst. 1999, 32, 837.
[2] G. M. Sheldrick "SHELX97. Programs for Crystal Structure Analysis,"
University of Göttingen, Germany, 1997.
[3] L. J. Farrugia, J. Appl. Cryst. 1997, 30, 565.


ORTEP plot of compound 13 (one of two crystallographically independent molecules shown, $30 \%$ probability ellipsoids shown).


ORTEP plot of compound 20 (30\% probability ellipsoids).


ORTEP plot of compound 21 (30\% probability ellipsoids).


ORTEP plot of compound 23 (30\% probability ellipsoids).


ORTEP plot of compound $\mathbf{1 2}$ (one of two crystallographically independent molecules shown, $30 \%$ probability ellipsoids).

500 MHz Proton NMR spectrum of the major isomer 15


125 MHz Carbon-13 NMR spectrum of major isomer 15


100 MHz Carbon-13 NMR spectrum of the cyclopropyl product mixture $15,16,26$ and 27 in CDCl 3


Expansion of the 100 MHz carbon-13 NMR spectrum of mixture $15,16,26$ and 27 in CDCl 3 (Note broadening of some signals of 15 )





| ppm | 40 | $\frac{1}{35}$ | 30 | 25 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: |

Expansion of 125 MHz Carbon-13 NMR spectrum of the cyclopropyl product mixture 15, 16, 26 and 27 (benzene-d6)


Expansion of the 750 MHz proton NMR spectrum of the mixture of 15,16 , 26 and 27 in benzene-d6 (Note broadening of one of the signals for 15)





Minor isomer $=*$


| 0.5 | 0.4 | 0.3 | 0.2 | 0.1 |
| :--- | :--- | :--- | :--- | :--- |

## Spectral, analytical and physical data of some key intermediates



20
Mp: $66.5-68.0^{\circ} \mathrm{C}$
Found C 72.36, H 9.31. $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3}$ requires C 72.69 , $\mathrm{H} 9.15 \%$.
${ }^{1} \mathrm{H}$ NMR (400MHz): $\delta 4.15$ ( $2 \mathrm{H}, \mathrm{dq}, \mathrm{J} 10.8,7.1$ ), $2.76(1 \mathrm{H}, \mathrm{m}), 2.24$ ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.2,2.5$ ),
$2.17(4 \mathrm{H}, \mathrm{m}), 1.90(1 \mathrm{H}$, ddd, J 12.9, 6.88, 3.9), $1.83(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.1), 1.65(2 \mathrm{H}, \mathrm{m}), 1.27(1 \mathrm{H}$, t, J 12.7), $1.24(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.2), 0.97(3 \mathrm{H}, \mathrm{s}), 0.94(3 \mathrm{H}, \mathrm{s})$.
${ }^{13} \mathrm{C}$ NMR (100MHz): $\delta 203.8,175.3,142.1,132.2,60.4,56.1,46.3,44.1,36.6,32.9,32.7$, 31.7, 25.72, 25.67, 21.3, 14.2.

EIMS (m/z, (\%)): $264\left(\mathrm{M}^{+}, 67\right), 249$ (31), 191 (32), 175 (100), 149 (23), 134 (24), 107 (27), 91 (43), 79 (23), 77 (29), 41 (22).


## 21

Mp: $41.5-44^{\circ} \mathrm{C}$
Found: C 72.86, H 9.42. $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3}$ requires $\mathrm{C} 72.69, \mathrm{H} 9.15 \%$.
${ }^{1} \mathrm{H}$ NMR ( 400 MHz ): $\delta 4.13(2 \mathrm{H}, 2 \times \mathrm{dq}, \mathrm{J} 10.8,7.1), 2.79(1 \mathrm{H}, \mathrm{m}), 2.71(1 \mathrm{H}, \mathrm{m}), 2.26$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.5,2.1), 2.15(3 \mathrm{H}, \mathrm{m}), 1.87(3 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1.1,1.0), 1.80(2 \mathrm{H}, \mathrm{m}), 1.59(1 \mathrm{H}, \mathrm{t}, \mathrm{J}$ 12.8), $1.40(1 \mathrm{H}$, ddd, J 12.6, 4.68, 2.0), $1.24(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.2), 0.97(3 \mathrm{H}, \mathrm{s}), 0.96(3 \mathrm{H}, \mathrm{s})$.
${ }^{13} \mathrm{C}$ NMR (100MHz): $\delta 204.0,173.7,141.3,132.0,60.1,55.7,42.3,41.2,35.4,32.7,31.8$, 31.6, 26.7, 22.1, 21.0, 14.3.

EIMS (m/z, (\%)): 264 ( $\mathrm{M}^{+}, 24$ ), 249 (5), 191 (19), 175 (100), 147 (10), 135 (10), 107 (22), 105 (17), 91 (33), 77 (19), 55 (15), 41 (20).


## 24

$\mathrm{Mp}: 93.5-95.0^{\circ} \mathrm{C}$
Found: C 73.19, H 10.04. $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{3}$ requires C 73.14, H 9.84\%.
${ }^{1} \mathrm{H}$ NMR ( 400 MHz ): $\delta 4.61(1 \mathrm{H}, \mathrm{br} \mathrm{t}, \mathrm{J} 3.0), 4.14(2 \mathrm{H}, 2 \times \mathrm{dq}, \mathrm{J} 10.8,7.1), 2.36(1 \mathrm{H}, \mathrm{br}$ m), $2.20-1.82(5 \mathrm{H}, \mathrm{m}), 1.76(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.9), 1.40-1.25(3 \mathrm{H}, \mathrm{m}), 1.24(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.2), 1.07$ $(3 \mathrm{H}, \mathrm{s}), 0.94(3 \mathrm{H}, \mathrm{s})$.
${ }^{13} \mathrm{C}$ NMR (100MHz): $\delta 176.0,133.8,129.8,68.1,60.2,47.2,42.6,41.8,34.6,33.1,31.9$, 30.6, 28.9, 26.4, 18.5, 14.3.

EIMS (m/z, (\%)): $266\left(\mathrm{M}^{+}, 17\right), 192$ (100), 177 (29), 175 (34), 159 (48), 107 (30), 105 (45), 93 (37), 91 (54), 79 (30), 55 (39), 43 (44), 41 (53).


## Epi-24

${ }^{1} \mathrm{H}$ NMR (400MHz): $\delta 4.46(1 \mathrm{H}, \mathrm{br} \mathrm{t}, \mathrm{J} 5.9), 4.10(2 \mathrm{H}, 2 \times \mathrm{dq}, \mathrm{J} 10.8,7.2), 2.60(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}$ $10.3,5.4), 2.34(1 \mathrm{H}, \mathrm{m}), 2.01(2 \mathrm{H}, \mathrm{br}$ dd, J 7.0, 3.9), $1.83(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 0.7), 1.74(2 \mathrm{H}, \mathrm{m})$, $1.51(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.2), 1.41(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 12.9), 1.22(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1), 1.03(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.8,3.1), 0.98$ $(3 \mathrm{H}, \mathrm{s}), 0.97(3 \mathrm{H}, \mathrm{s})$.
${ }^{13} \mathrm{C}$ NMR (100MHz): $\delta 174.5,133.4,126.3,70.9,59.9,47.7,43.2,34.5,33.0,32.2,30.5$, 28.4, 22.0, 18.9, 14.3.

EIMS (m/z, (\%)): $248\left(\mathrm{M}^{+}-18,51\right), 175$ (69), 174 (67), 159 (58), 133 (41), 119 (67), 118 (30), 105 (100), 93 (22), 91 (29), 55 (22), 41 (28).


## 11

${ }^{1} \mathrm{H}$ NMR (400MHz, J in Hz): $\delta 4.57(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.07(1 \mathrm{H}, \mathrm{m}), 1.90(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17.7,5.4)$, $1.75(3 \mathrm{H}, \mathrm{s}), 1.64(2 \mathrm{H}, \mathrm{m}), 1.58(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.6,2.5), 1.56(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 11.6), 1.34(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 14.8, 2.7), $1.24(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 12.1,5.6), 1.16(1 \mathrm{H}, \mathrm{m}), 1.10(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 13.0), 1.08(3 \mathrm{H}, \mathrm{s}), 0.94$ (3H, d, J 6.2), $0.93(3 \mathrm{H}, \mathrm{s})$.
${ }^{13} \mathrm{C}$ NMR (100MHz): $\delta 135.0,130.0,68.6,42.8,41.4,39.8,34.3,33.3,32.5,31.5,30.7$, 29.0, 20.2, 18.8.

EIMS (m/z, (\%)): $208\left(\mathrm{M}^{+}, 44\right), 193$ (70), 165 (40), 152 (56), 133 (31), 119 (50), 109 (70), 91 (59), 79 (45), 67 (37), 55 (42), 41 (100).

HREIMS for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}$ : calculated 208.1827; found 208.1828.


## 12

${ }^{1} \mathrm{H}$ NMR ( 400 MHz , J in Hz): $\delta 4.57$ ( $1 \mathrm{H}, \mathrm{br} \mathrm{s}$ ), 2.05 ( $2 \mathrm{H}, \mathrm{m}$ ), 1.74 ( $3 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1.1,0.9$ ), $1.63(2 \mathrm{H}, \mathrm{m}), 1.52(2 \mathrm{H}, \mathrm{m}), 1.35-1.05(5 \mathrm{H}, \mathrm{m}), 0.94(3 \mathrm{H}, \mathrm{s}), 0.89(3 \mathrm{H}, \mathrm{s}), 0.77(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 7.0).
${ }^{13} \mathrm{C}$ NMR (100MHz): $\delta 133.5,128.7,68.8,43.6,40.0,35.7,33.6,30.8,30.5,29.5,29.1$, 29.0, 18.4, 13.7.

EIMS (m/z, (\%)):208 ( $\left.\mathrm{M}^{+}, 49\right), 193(81), 165$ (41), 152 (48), 133 (34), 119 (58), 109 (72), 91 (69), 79 (42), 67 (33), 55 (49), 41 (100).

