10.1071/ CH05246_AC ©CSIRO 2005 Accessory Publication: Aust. J. Chem., 2005, 58(11), 767–777.

ACCESSORY MATERIALS

Driving the Localized-to-Delocalized Transition in Unsymmetrical Dinuclear Ruthenium Mixed-Valence Complexes

Deanna M. D'Alessandro and F. Richard Keene

Figure S1. ¹H NMR numbering scheme for the terminal and bridging ligands.

Figure S2. (a) Chem 3D representations of $m \exp((\Delta \Delta) - and rac(\Delta \Delta) - [\{Ru(bpy)_2\}_2(\mu - dpb')]^{4+}$. Hydrogen atom s are om itted for clarity.

Figure S3. (a) v_{max} (b) $\Delta v_{1/2}$ and (c) M₁ as a function of E₀ for the series [{Ru(bpy)₂}(μ -BL){Ru(pp)₂}]⁵⁺ {BL = dpb, dpb'; pp = bpy, M e₂bpy, M e₄bpy}. Enorbars are on itted for clarity.

	1		
		meso	rac
		$(\Delta\Lambda/\Lambda\Delta)$	$(\Delta\Delta/\Lambda\Lambda)$
bpy ring a^A	H3'	8.27	8.57
opy ning u	H4'	8.13	8.25
(over bpy)	H5'	7.70	7.62
	H6'	7.97	8.00
boy ring \mathbf{b}^A	H3	8.72	8.57
opy mig o	H4	8.19	8.05
(over ppz)	H5	7.25	7.01
	H6	7.72	7.54
boy ring c^A	H3'	8.69	8.63
opy mig c	H4'	8.24	8.21
(over bpy)	H5'	7.48	7.54
	H6'	7.75	7.68
boy ring d^A	H3	8.06	8.45
opy mg u	H4	7.76	8.02
(over BL)	H5	7.15	7.25
	H6	6.97	7.34
dph ^B	H2/7	8.24	8.07
upo	H3/6	7.33	7.15
	H4/5	7.58	7.57
	H10/15	8.16	8.18
	H11/14	7.98	7.99
	H12/13	9.33	9.26

Table S1. ¹H Chemical shifts (ppm) for the diastereoisomeric forms of $[{Ru(bpy)_2}_2(\mu-dpb')]^{4+}$ (CD₃CN, PF₆⁻ salts).

^{*A*} H6 (dd; J = 5, 1.5 Hz); H5 (dd; J = 8, 5 Hz); H4 (dd; J = 8, 8 Hz); H3 (dd; J = 8, 1.5 Hz). ^{*B*} H2/7 (s); H3/6 (dd, J = 5, 1.5 Hz); H4/5 (dd, J = 10, 8 Hz); H10/15 (d, J = 8 Hz); H11/14 (dd, J = 8, 1.5 Hz); H12/13 (d, J = 8 Hz).

¹H NMR spectral assignments for $[{Ru(bpy)_2}_2(\mu-dpb')]^{4+}$

The *meso* and *rac* diastereoisomers possess C_s and C_2 point group symmetries, respectively, and may be distinguished on the basis of differential anisotropic interactions experienced by the bpy protons depending upon the stereochemical relationship of the two metal centres. In addition, the dpb' ligand exhibits seven magnetically non-equivalent proton resonances. The point group symmetries of both diastereoisomers require two non-equivalent bpy ligands, with the two halves of each being magnetically non-equivalent and hence four different environments for the py ligands (denoted *ring a-d* in Figure S2), two over the bridge (*rings b* and *d*) and two directed away from the bridge (*rings a* and *c*).

The H5 and H6 protons (*rings b* and *d* oriented over the bridge) experience the most pronounced shifts between the two diastereoisomeric forms. In the *rac* diastereoisomer, bpy *ring b* is oriented over the plane of the dpb ligand and the bpy ligand across the bridge such that the H5 and H6 protons of bpy *ring b* experience increased diamagnetic anisotropic effects. The H5 proton of *ring b* was assigned as the most upfield resonance at 7.01 ppm (J = 8, 5 Hz, dd) while H6 (*ring b*) was assigned as the 7.54 ppm (J = 5, 1.5 Hz, dd) resonance. By comparison, the H5 and H6 protons of bpy *ring b* are oriented approximately in the plane and thus in the deshielding cone of the equivalent bpy across the bridge in the *meso* diastereoisomer. The H5' proton of *ring d*, which is situated over the plane of the dpb' ligand and approximately parallel to the magnetically equivalent bpy across the bridge, experiences the relatively greatest anisotropic effect and is assigned as the most upfield resonance at 7.25 ppm (J = 8, 5 Hz, dd).

The assignment of the remaining resonances was achieved by ¹H COSY experiments and the differential anisotropic effects.

рр	Diastereoisomer	E _{red1}	E _{red2}	E _{red3}	E _{red4}	E _{red5}	E _{red6}
Me ₄ bpy	meso	-664	-1252	-1604	-2096	-2201	-2412
				-1768			
				-1893			
				-2004			
	rac	-656	-1304	-1892	-2125	-2202	-2404
Me ₂ bpy	meso	-644	-1292	-1880	-1996	-2156	-2316
	rac	-644	-1288	-1896	-1996	-2164	-2300
bpy	meso	-624	-1268	-1888	-2116	-2240	-2552
	rac	-624	-1260	-1876		-2252	-2640

Table S2.	Reduction pot	entials (in mV	relative to the Fc^{-}/Fc°	couple) for [{Ru(t	opy) ₂ }(µ-dpb){Ru(p	p) ₂ }] ⁺⁺ in 0.1 M [($n-C_4H_9)_4N]PF_6/CH_3CN.$

рр	Diastereoisomer	E _{red1}	E _{red2}	E _{red3}	E _{red4}	E _{red5}	E _{red6}
Me ₄ bpy	meso	-496	-1148	-1880	-2172	-2448	-2663
	rac	-496	-1148	-1876	-2160	-2432	-2743
Me ₂ bpy	meso	-484	-1132	-1883	-1976	-2157	-2260
	rac	-496	-1128	-1868	-1981	-2144	-2272
bpy	meso	-464	-1116	-1888	-2180	-2716	
	rac	-452	-1096	-1884	-2192	-2720	

Table S3. Reduction potentials (in mV relative to the Fc^+/Fc	⁰ couple) for $[{Ru(bpy)_2}(\mu-dpb'){Ru(pp)_2}]^4$	⁺ in 0.1 M [$(n-C_4H_9)_4N$]PF ₆ /CH ₃ CN.
--	--	---

			BL	= dpb		BL = dpb'				
рр		Me ₄ bpy		Me	₂ bpy	Me ₄ bpy		Me ₂ bpy		
Diastereoisomer	n+	ν ± 10/cm ⁻¹	$(\epsilon/\nu) \pm 0.001 / M^{-1}$	ν ± 10/cm ⁻¹	$(\epsilon/\nu) \pm 0.001 / M^{-1}$	ν ± 10/cm ⁻¹	$(\epsilon/\nu) \pm 0.001 / M^{-1}$	ν ± 10/cm ⁻¹	$(\epsilon/\nu) \pm 0.001 / M^{-1}$	
meso	4	14960 sh 23550 24300 26980 28240 29260	1.325 0.946 0.987 1.424 1.432 1.442	15310 23490 sh 24400 26970 29420	1.127 0.946 0.851 1.339 1.341	13700 16730 24750 29230	1.825 0.280 1.299 1.482	13810 16730 24840 29230	1.949 0.206 1.236 1.466	
	5	6125 15100 25930	0.141 0.790 1.447	5904 15130 sh 25860	0.179 0.671 1.288	5807 14080 <i>sh</i> 21820 <i>sh</i> 22860 24580 28270	0.223 0.916 0.459 0.576 0.788 1.303	5502 14030 <i>sh</i> 21840 <i>sh</i> 22970 24540 28270	0.518 0.998 0.410 0.535 0.713 1.287	
	6	20400 21750 25270	0.484 0.614 1.737					13960 20870 21930 27390	0.207 0.820 0.739 1.482	
rac	4	14970 sh 23600 24310 26900 28250 29260	1.228 0.817 0.858 1.287 1.290 1.295	15230 23470 sh 24380 26900 29190	1.185 0.888 0.799 1.228 1.332	13690 16660 24740 29280	1.864 0.359 1.261 1.421	13720 16690 24710 29130	2.011 0.269 1.342 1.422	
	5	6129 15070 25980	0.144 0.731 1.272	5543 15120 sh 25920	0.230 0.684 1.385	5799 14030 <i>sh</i> 21720 22820 24740 28360	0.165 0.898 0.486 0.589 0.823 1.204	5423 13980 21770 <i>sh</i> 22850 24510 28140	0.332 1.153 0.480 0.584 0.836 1.272	
	6	21710 20330 25240	0.492 0.354 1.571	20520 sh 21870 25270	0.359 0.538 1.786	5732 14130 21510 22700 27830	$\begin{array}{c} 0.535 \\ 0.470 \\ 0.503 \\ 0.983 \end{array}$	14050 20950 22020 27510	0.218 0.893 0.763 1.408	

Table S4. Spectroelectrochemical data for $[{Ru(bpy)_2}(\mu-BL){Ru(pp)_2}]^{4+}$ {BL = dpb or dpb'} in 0.1 M $[(n-C_4H_9)_4N]PF_6/CH_3CN$.

		BL = dpb			BL = dpb'						
pp	Diastereoisomer	ν_{max}	$(\epsilon/\nu)_{max}$	$\Delta v_{1/2}$	M_0	M_1	ν_{max}	$(\epsilon/\nu)_{max}$	$\Delta v_{1/2}$	M_0	M_1
		±10	± 0.001	± 10	/M ⁻¹	/cm ⁻¹	±10	± 0.001	± 10	/M ⁻¹	/cm ⁻¹
		/cm ⁻¹	/M ⁻¹	/cm ⁻¹			/cm ⁻¹	/M ⁻¹	/cm ⁻¹		
Me ₄ bpy	meso	6125	0.141	2230	331	6150	5810	0.223	1675	484	8640
		3925	0.005	255	0.372		2513	0.050	2399	9.36	
		4648	0.006	1574	9.47		5849	0.211	1501	337	
		6140	0.137	2193	317		5300	0.020	565	12.2	
		7905	0.004	1035	4.4		7054	0.030	1429	46.1	
							9298	0.029	793	11.4	
	rac	6130	0.144	2270	350	6125	5800	0.165	1870	357	5930
		2398	0.026	2916	7.95		2513	0.049	2399	9.15	
		6112	0.142	2274	338		5849	0.206	1501	329	
		8061	0.003	944	3.29		5300	0.019	565	11.9	
							7054	0.029	1429	45.0	
							9298	0.029	793	11.2	
Me ₂ bpy	meso	5905	0.179	2415	386	6020	5500	0.518	1415	512.1	5725
		3897	0.013	649	3.40		4018	0.030	659	11.0	
		5896	0.148	2182	338		5488	0.489	1099	571	
		5022	0.013	849.6	12.1		6261	0.086	756	69.4	
		7464	0.017	1733	32.2		6754	0.066	1180	83.6	
							9289	0.072	976	35.4	
	rac	5540	0.230	2345	559	5780	5420	0.332	1265	735	7570
		3902	0.013	447	2.38		4062	0.006	330	1.42	
		4916	0.012	629	8.62		5086	0.008	382	3.30	
		5556	0.222	2186	494		5444	0.314	1074	358	
		7117	0.027	1944	56.4		6180	0.083	795	70.2	
							6648	0.058	1253	78.3	
							9212	0.034	961	19.0	

Table S5. NIR spectral data of the reduced absorption spectra ($\epsilon/\nu vs. \nu$) for [{Ru(bpy)₂}(μ -BL){Ru(pp)₂}]⁵⁺ {BL = dpb, dpb'} at -35°C, respectively. The parameters for the overall NIR band envelopes are shown in bold type, and details of the deconvoluted bands are in normal type.

Table S6. Spectroelectrochemical data for $[{Ru(bpy)_2}_2(\mu-BL)]^{4+}$ {BL = dpb or dpb'} in 0.1 M $[(n-C_4H_9)_4N]PF_6/CH_3CN$. The parameters of the IVCT transitions are indicated in bold type.^{*A*}

BL		(dpb	dpb'		
Diastereoisomer	n+	v_{max} /cm ⁻¹	$(\epsilon/\nu)_{max}/M^{-1}$	$\nu_{max}/cm^{\text{-1}}$	$(\epsilon/\nu)_{max}/M^{-1}$	
meso	4	sh 13070	0.295	sh 11670	0.264	
		15530	1.444	13880	2.041	
		23520	1.081	16900	0.213	
		24460	0.982	24780	1.352	
		26870	1.569	29140	1.509	
		29450	1.435			
	5	5205	0.306	5285	0.808	
		15120	0.767	9253	0.099	
		sh 17370	0.450	11420	0.359	
		25920	1.474	13930	0.959	
				21660	0.378	
				22770	0.473	
				24760	0.708	
				28040	1.275	
	6	~15000		14210	0.149	
		16870	0.225	20850	0.834	
		25230	1.270	22140	0.775	
				27440	1.533	
rac	4	sh 13070	0.226	sh 11770	0.253	
		15420	1.415	13870	1.896	
		20480	0.349	16850	0.166	
		23470	1.110	24780	1.215	
		sh 24400	0.987	29150	1.324	
		26820	1.491			
		29400	1.525			
	5	4998	0.457	5290	0.722	
		14980	0.683	9223	0.087	
		25700	1.636	11250	0.279	
				13920	0.905	
				21630	0.349	
				22680	0.436	
				24570	0.657	
				27980	1.137	
	6	17760	0.127	12730	0.318	
		25170	1.948	15880	0.200	
				20850	0.646	
				22180	0.619	
				27430	1.306	

^{*A*} Errors in v_{max} and $(\epsilon/v)_{max}$ are $\pm 10 \text{ cm}^{-1}$ and $\pm 0.001 \text{ M}^{-1}$, respectively.